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1 Пролог

GlobalErp Mobile Framework является платформой быстрой разработки мобильных приложений от
компании GlobalERP.

Фреймворк изолирует прикладного разработчика от системной бизнес-логики и задаёт единый стиль на
уровне проекта, что позволяет эффективно разрабатывать приложения любого масштаба. Подробнее
смотрите ключевые возможности.

Фреймворк позволяет избежать типовых усложнений, с которыми сталкивается разработчик мобиль-
ных приложений при работе со стандартным SDK.

2 Введение

2.1 Ключевые возможности

� Перенос вычислений в серверный поток
Главный поток никогда не блокируется: фрейм-рендер выполнился — задача ушла в очередь,
анимация пользовательского интерфейса не зависит от бизнес-логики.

� Хранение данных

� Транзакционная обработка данных GsSession:

– SQLite, файлы, сетевые отклики — коммитятся или откатываются одним вызовом.

– Встроенный генератор ID и горячий кэш сущностей.

� Автоматизация работы с инъекциями зависимостей

� Адаптированный MVVM-паттерн

� Навигация между представлениями

� Планирование серверных команд
Позволяет избавиться от сложных асинхронных запусков.

� Observable-слой данных
RecordSet, SingleRecord, RecordValue<T> передают изменения сразу в Compose-дерево, без необ-
ходимости писать адаптеры.

� Плагин-подход к железу
ActivityPlugin регистрируется в GsBaseActivity; доступ к NFC или камере получаем без
Dagger/Hilt.

� Горячий офлайн
Легко настраивать работу, копить данные и синхронизировать по необходимости
за счёт встроенной поддержки БД .

� Простое тестирование
State/VCI можно запустить с database = null, логика тестируется без Android-эмулятора, при
этом транзакционная модель сохраняется.
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2.2 Архитектура

Взаимодействие слоев

Основные понятия

� Главный поток (mainThread) — поток взаимодействия с пользователем; этот поток не должен
блокироваться. Рендерит Compose, обрабатывает жесты и никогда не исполняет длительных опе-
раций.

� Серверный поток (serverThread) — поток для выполнения синхронной бизнес-логики и син-
хронизации с асинхронными задачами. Последовательно выполняет SQL, операции с файлами,
трансформации стека и любые другие долгие операции. Все вызовы VCI к тяжёлым ресурсам
отправляются сюда через postSharedTask или postAsyncTask (минуют карусель событий).

� Сессия (GsSession) — сессия работы с данными.
Содержит контекст для хранения и управления компонентами, необходимыми для обработки
данных.

� Состояние (State) — содержит данные и бизнес-логику представления, работающую в серверном
потоке.

� Стек состояний — хранит историю открытых представлений. Верхнее представление отобража-
ется на экране.
Позволяет пользователю возвращаться на предыдущее представление.
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� Контроллер представления (VCI) — содержит данные и бизнес-логику представления в главном
потоке.

� Представление (VcpScreen) — декларация правил отрисовки представления с использованием
библиотеки Compose.

� Контроллер сессии (Api, Pkg) — контроллер сессии обрабатывает бизнес-логику в серверном
потоке в разрезе сущностей базы данных или их групп.

� Навигатор (Navigator) — занимается компоновкой и управлением представлениями приложения.

� Главная активность (MainActivity) — точка входа Android-приложения, подробнее смотрите
руководство по разработке на платформе Android.

Отдельный серверный поток

Отдельный серверный поток для выполнения бизнес-логики лучше, чем рассыпанные потоки
launch(Dispatchers.IO), так как позволяет достичь:

� более высокой производительности на последовательных вычислениях за счёт отсутствия необ-
ходимости
межпотоковой синхронизации;

� более простой разработки и отладки за счёт:

– последовательного выполнения, что позволяет использовать классические принципы струк-
турного программирования;

– полностью воспроизводимого stack trace —
нет прыжков между диспатчерами;

– декларативной двусторонней синхронизации между главным и серверным потоком;

– контролируемой отмены:
InterruptingLock.validate() бросит исключение на любой стадии, стек откатится, а UI
мирно вернётся к последнему стабильному экрану.

Адаптированный MVVM-паттерн

Обеспечивает:

� Предсказуемый интерфейс
Стабильный FPS даже на сложных формах.

� Единый стиль
Все экраны одинаково устроены, code review смотрит в основном на логику, а не на повторяющи-
еся слои.

Детализация принципа view–viewmodel–model:

� View — декларация интерфейса на Compose-UI, объявляется в VCI .

� viewmodel — разбит на 2 слоя для отделения бизнес-логики главного и серверного потоков:

– VCI — бизнес-логика для работы в главном потоке, а также подписка на данные state.

– State — бизнес-логика для работы в серверном потоке, а также сбор данных для представ-
ления.

� model:

– Api — контроллер таблицы для обработки хранимых данных;
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– Entity — модель хранимых данных.

Жизненный цикл экранов

Таблица ниже отображает карусель событий, которые произойдут при открытии и закрытии экрана.

Событие Когда вызывается Что делать

onInit(State,
VCI)

Сразу после создания,
синхронно

Подготовить запросы к БД, инициализировать RecordSet

afterPush(State)State помещён в стек Подписаться на шину, запустить лёгкие preload-задачи
onVisit() :

SmTrans(State)
Сразу после push, но
до afterEnter

Вернуть SmTrans для мгновенного перенаправления (на-
пример Splash → Login) или null

afterEnter(State)Каждый раз, когда
State стал активным

Обновить данные, запустить postSharedTask; триггерится
на каждую фоновую задачу

afterEnter(VCI)UI создан и синхрони-
зирован с главным по-
током

Восстановить scroll-позицию, открыть диалоги, получить
данные из State — главная точка синхронизации перед по-
казом экрана

beforeExit(VCI)UI ещё на экране, но
пользователь уходит

Сохранить scroll, закрыть диалоги, очистить временные
данные

beforeExit(State)UI уже закрыт, тран-
закция ещё открыта

flush() RecordSet, финальные изменения в БД, подготовка
к уходу

onError(e)(State)Любая необработан-
ная ошибка внутри
State

Вернуть SmTrans на экран ошибки или кастомизировать об-
работку

onClose(State) State удалён из стека
окончательно

Отписаться от шины, освободить ресурсы

Дополнительные понятия

� Менеджер состояний(StateManager) - отвечает за обработку очереди событий для серверного
потока и транзакционной логики обработки переходов между состояниями. StateManager обра-
щается к UI из серверного потока безопасно через блокировки, поэтому состояние стека остаётся
консистентным.

2.3 Тестирование и масштабирование

� Любой State и VCI можно запустить с database = null логика тестируется без эмулятора, тран-
закционная модель при этом сохраняется.

� Новый экран требует три файла — State, VCI, Compose-View — и не затрагивает существующий
код; команда растёт линейно, не переписывая инфраструктуру.
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3 Быстрый старт

Ниже — минимальный, но полностью рабочий пример приложения на GMF.
Мы пройдём по всем слоям: от Entity до Compose-экрана, подключим DI-генератор и объясним, куда
поместить каждый файл.

3.1 Шаблон проекта

Зависимости в Gradle

// build.gradle (модуль :app)

plugins {

id("com.android.application")

kotlin("android")

alias(libs.plugins.google.devtools.ksp) // KSP для DI-процессора

}

android { /* стандартная конфигурация */ }

dependencies {

implementation(libs.kotlinx.coroutines.android)

implementation(libs.androidx.compose.material3)

ksp(libs.androidx.room.compiler)

implementation(project(":common")) // GMF

ksp(project(":di-processor")) // кодогенерация @GsApiBean / @GsPkgBean

}

Скелет каталогов

src/main/java

ru.my.app

api/ – классы доступа к БД (UserApi и др.)

db/ – Entity, Dao, AppDatabase

pkg/ – сетевые / сервисные пакеты (опционально)

ui/

| users/

| UsersState.kt

| UsersVci.kt

| view/

| UsersView.kt

| ViewProvider.kt

MainActivity.kt – точка входа

Delegates.kt – DataStore, расширения навигатора и т.д.
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ORM-классы

// db/User.kt

@Entity

data class User(

var name : String? = null,

var email : String? = null,

var age : Int? = null,

) : BaseEntity() {

override fun copyEntity() = copy()

}

// db/UserDao.kt

@Dao

abstract class UserDao : BaseDao<User>()

Room-база

// db/AppDatabase.kt

@Database(

entities = [SystemEntity::class, User::class],

version = 1,

exportSchema = false

)

abstract class AppDatabase : RoomDatabase() {

abstract val userDao: UserDao

companion object {

@Volatile private var INSTANCE: AppDatabase? = null

fun getInstance(ctx: Context): AppDatabase =

INSTANCE ?: synchronized(this) {

INSTANCE ?: Room.databaseBuilder(

ctx,

AppDatabase::class.java,

"AppDB"

).build().also { INSTANCE = it }

}

}

}

Если нужна базовая реализация БД, можно использовать в MainActivity:

override fun provideDatabase(): PrototypeDatabase =

RoomDbSingleton.getInstance(this, "PrototypeDatabase")

и не создавать companion object в классе БД для хранения инстанса.
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DI-процессор

Аннотация @GsApiBean говорит KSP-процессору сгенерировать расширение
GsSession.getUserApi() — обращение к нашему API без строковых имён.

// api/UserApi.kt

@GsApiBean

class UserApi(ctx: ApiBeanContext)

: DbBaseApiGen<User, UserDao, AppDatabase>(ctx) {

override val dao get() = dbRoom.userDao

override fun newEntity() = User()

/** Демо-данные при первом старте */

fun seed() {

if (fetchAll().isNotEmpty()) return

listOf(

"Alice" to "alice@site.com",

"Bob" to "bob@site.com",

"Chloe" to "chloe@site.com",

).forEach { (n, e) ->

insert().update {

it.name = n

it.email = e

it.age = (20..45).random()

}

}

flush()

}

}

Бизнес-логика экрана

// ui/users/UsersState.kt

class UsersState : SmStateAbst<UsersState>() {

val usersRS = newRecordSet() // RecordSet

override fun onInit() {

usersRS.onPopulate { q ->

q.query("SELECT * FROM User ORDER BY name")

}

}

override fun afterEnter() {

dbs.getUserApi().seed() // лениво создаётся через DI

usersRS.refresh()

}

override fun newVci(): SmStateVcp = UsersVci()

}
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Контроллер главного потока

// ui/users/UsersVci.kt

class UsersVci : SmStateVciAbst<UsersState>() {

var usersORL = nullObservableRecordList

override fun afterEnter(st: UsersState) {

usersORL = st.usersRS.observableRecordList

}

override fun newScreen() = provideUsersView(this)

override fun getTitle() = "Пользователи"

}

VCI — View Control Interface

Пользовательский интерфейс

// ui/users/view/UsersView.kt

fun provideUsersView(vci: UsersVci) = object : VcpScreen {

@Composable

override fun Content(pv: PaddingValues) {

val users by vci.usersORL.observeAsState()

LazyColumn(

Modifier

.fillMaxSize()

.padding(pv)

) {

items(users) { or ->

Card(

modifier = Modifier

.fillMaxWidth()

.padding(8.dp),

onClick = { /* переход на карточку */ }

) {

Column(Modifier.padding(16.dp)) {

Text(

or.getValueAsString("name"),

style = MaterialTheme.typography.titleMedium

)

Text(

or.getValueAsString("email"),

style = MaterialTheme.typography.bodyMedium

)

}

}

}

}

}

}
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Точка входа

// MainActivity.kt

class MainActivity : GsBaseActivity<AppNavigator>() {

@Composable

override fun ContentView(navigatorCtrl: NavigatorCtrl) {

GlobalSystemAppTheme {

navigator.setBaseMenu(

listOf(

DrawerItem("Пользователи") {

getSts().postCallState<UsersState>()

}

)

)

GsDrawerNavigatorViewV2(navigatorCtrl)

}

}

override fun provideNavigator() = AppNavigator()

override fun provideDatabase() = AppDatabase.getInstance(this)

override fun provideFirstState() = UsersState()

}

Итог

� Все SQL-операции, сеть и файлы уже работают внутри транзакций GsSession.

� UI-поток чист: ни одного launch(Dispatchers.IO) в пользовательском коде.

� Навигация описана в три строки (DrawerItem → postCallState).

� Расширение команды: новый экран — это ещё State + VCI + View, инфраструктуру трогать не
нужно.

Получился полноценный экран, который:

1. Умеет читать и писать в БД транзакционно.

2. Никогда не блокирует главный поток.

3. Восстанавливается после сбоев приложения (снимок стека сохраняет State Manager).

4. Готов к расширению: добавление сети, плагинов камеры, офлайн-синхронизации и т.д.

4 Состояние

State создаётся для представления и выполняет следующие функции:

� Хранит данные для контроллера представления

Примечание

UI-слой только подписывается на Observable-источники, не знает о SQL и транзакциях.
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� Позволяет обращаться к контроллерам данных, использовать БД и сеть

� Запускает тяжёлые задачи

� Принимает решения о навигации

Внимание

Любые запросы к данным должны проходить через State, чтобы гарантировать сериализацию и
единый откат.

4.1 Минимальный скелет

class UsersState : SmStateAbst<UsersState>() {

/* ----------- Данные ----------- */

val usersRS = newRecordSet()

/* ----------- Контроллер ----------- */

override fun newVci(): SmStateVcp = UsersVci()

/* 1. Конструируем запросы и подписки */

override fun onInit() {

usersRS.onPopulate { q ->

q.query("SELECT * FROM Users ORDER BY sName")

}

}

/* 2. Первый вход в стек (UI ещё не создан) */

override fun afterEnter() {

dbs.getApi(UserApi::class).seed() // демо-данные

// выполняет onPopulate() каждый раз; если вызвать populate(), то считывание␣

→˓будет однократным

usersRS.refresh()

}

}
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4.2 Жизненный цикл

Этап По-

ток

Назначение

onInit() Server Вызывается один раз после создания; регистрируем SQL-запросы и подписки
afterPush() Server Сразу после stateStack.push(); лёгкий хук, не запускать тяжёлые операции
onVisit() Server Даёт возможность выполнить сквозной переход до создания UI; вернуть

SmTrans или null

afterEnter() Server Каждый раз, когда State становится верхним; обновляем данные, запускаем
SharedTask

afterEnterGui()Main UI построен; точка синхронизации в VCI (scroll, диалоги, реакция на данные)
beforeExitGui()Main Пользователь покидает экран; сохраняем scroll, закрываем диалоги, забира-

ем изменённые поля
beforeExit() Server UI уже снят; транзакция ещё открыта — пишем изменения в БД, вызываем

flush() у RecordSet

onError(e) Server Ловим необработанные ошибки; можно вернуть альтернативный SmTrans

onClose() Server State окончательно удалён из стека; освобождаем ресурсы, отписываемся

4.3 Контейнеры данных

Список записей

Предоставляет удобные способы работы как из главного, так и из серверного потоков.

Для серверного потока:

� запрос данных из базы данных

Для главного потока:

� получение данных

� возможность безопасного редактирования с последующей передачей изменений в серверный по-
ток

val ordersRS = newRecordSet()

ordersRS.onPopulate {

it.query("SELECT * FROM Orders WHERE gidCustomer = ?", arrayOf(custGid))

}

ordersRS.onUpdateRecord { changes ->

val newQty = changes.getNewValueAsInt("nQuantity")

dbs.execSql(

"UPDATE Orders SET nQuantity = ? WHERE id = ?",

newQty,

changes.id

)

}
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Единственная строка

Обёртка над списком записей для удобной работы с одной строкой.

val orderSR = newSingleRecord()

orderSR.onPopulate {

it.query("SELECT * FROM Orders WHERE gid = ?", arrayOf(orderGid))

}

Строка по значению

Декоратор над набором строк, позволяющий преобразовывать data-класс в строку и обратно.

val editMode = newRecordValue(EditFlags(isReadonly = false))

4.4 Исполнители

Используются для выделения конкретного потока в разрезе Activity для выполнения специализиро-
ванных задач.

val camExec = newCameraExecutorSubscription()

sm.doLaunch("resize") {

camExec.executor.submit {

val path = imageUtil.resize(raw)

postSharedTask("link photo") { st ->

dbs.getApi(FileApi::class).attach(orderGid, path)

}

}

}

Исполнитель запускается, когда StateManager активен, и гасится при onStop() Activity.

Внимание

Не забывайте вызывать close() у ExecutorSubscription, если держите его дольше жизни State.

4.5 Сквозной переход

Позволяет автоматически переходить на следующий экран без ожидания действий пользователя.

override fun onVisit(): SmTrans? =

if (dbs.getPkg<AuthPkg>().hasToken())

callStateTrans<HomeState>() // уже залогинен

else

callStateTrans<LoginState>() // требуется авторизация
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4.6 Отмена длительных операций

InterruptingLock.validate() вызывается в потенциально длинных циклах.

Если пользователь нажал «Отмена»:

� выбрасывается CancelTaskException

� происходит rollback()

� UI возвращается к последнему стабильному экрану.

4.7 Хорошие практики

� Один экран — один State
Не склеивайте разные сущности.

� SQL/REST — только из State
VCI должен оставаться чистым.

� Методы State делайте идемпотентными
Пользователь может нажать кнопку дважды.

5 Навигатор

Класс, отвечающий за стандартное поведение пользовательского экрана:

� компоновка панелей и текущего представления

� перерисовка элементов

� блокировка экрана

� показ диалогов

� работа с меню и внутренней шиной событий

� и т.п.

Контроллер представления получает доступ к навигатору через свойство navigator.

Контроллер представления может изменить стандартное поведение, переопределив соответствующие
методы.
Перечень методов для переопределения определён в интерфейсе NavigableVcp.

Классы, реализующие навигатор:

� GsBottomNavigationBarView

� GsDrawerNavigationView
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5.1 Пользовательский Navigator

Фреймворк поставляет базовую реализацию, но вы можете создать свою, реализовав интерфейс
Navigator и передав её в GsBaseActivity.provideNavigator().
Все контроллеры продолжат работать: интерфейс стабилен.

5.2 Отображение экрана

Экран отрисовывается на основе следующих элементов:

� Контроллер представления
Используется контроллер представления верхнего состояния в стеке состояний.

– View — разметка на основе библиотеки Compose

– NavigableVcp — инъекция зависимости в навигатор, которая может переопределить стан-
дартное поведение:

* состав меню

* видимость меню

* FAB

* наименование экрана

� TopBar

� BottomBar

� Drawer

Только в случае GsDrawerNavigationView

� диалоговые окна

� загрузочные окна

В стеке никогда не хранится более одного экрана для каждого SmState.
Повторный вызов State просто обновляет существующий элемент.

5.3 TopBar

Плашка вверху экрана, используется для:

� навигационной кнопки
Часто используется для кнопки вызова меню или кнопки «назад».

� наименования экрана

� кнопок действий

Для понимания принципов использования смотрите AppBar в Google Material Design.

Функции навигатора:

� hideTopAppBar()

� showTopAppBar()

� topGsMenuItems
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5.4 BottomBar

Плашка внизу экрана, используется для:

� кнопок глобальной навигации

Для понимания принципов использования смотрите NavigationBar в Google Material Design.

Функции навигатора:

� hideBottomBar()

� showBottomBar()

� setBadgeFor(vciClassName, value)

В случае GsBottomNavigationBarView задаёт индикацию глобальным переходам.

5.5 Drawer

Выезжающая боковая панель, используется для глобальных переходов и действий.

5.6 Список глобальных переходов

Задаёт доступные переходы в состояния, которые пользователь может выполнить из
Drawer или BottomBar в зависимости от используемого навигатора.

Функции навигатора:

� setBaseMenu()

5.7 FAB

Плавающая кнопка, которая размещается поверх интерфейса и предназначена для выполнения глав-
ного действия на экране.

По умолчанию иконка + выключена. Переопределяется в NavigableVcp.

5.8 Блокировка и диалоги

Функции навигатора:

� lock("Sync...") — показывает полноэкранный индикатор и блокирует навигационные жесты

� unlock() — снимает блокировку
Это удобно для сетевых операций, которые важно завершить без выхода пользователя.

� createDialog(title, msg, ...) — упрощённый API для простых диалогов «OK/Cancel»
Данные хранятся в navigator.simpleDialog, Compose-слой реагирует автоматически.
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5.9 Шина событий

Навигатор предоставляет компактную шину событий (на основе Flow Kotlin) между независимыми
контроллерами представлений без глобальных синглтонов.

Функции контроллера представления:

� subscribeEventBus

// подписка

vci.subscribeEventBus<MyPayload>("UpdateEvent") { payload ->

// реакция

}

� sendEventBus

// публикация

vci.sendEventBus("UpdateEvent", MyPayload(...)) { error ->

// обработка ошибок

}

Примечание

� За каждым именем события хранится SharedFlow.

� При закрытии экрана closeEventBus(name) автоматически отменяет подписку, предотвращая
утечки.

5.10 Индикатор синхронизации

Функции навигатора:

� setNeedSync(boolean)

Включает или выключает иконку «обновить» в TopBar.

� onClickSyncBtn

Передаёт обработчик в текущий VCI; типичная реализация — вызов postSharedTask для синхро-
низации с сервером.

5.11 Примечание

Пример расширения Navigator

Пример расширения для работы с NFC:

class MyNavigator :

NavigatorCtrl(),

NavigatorNfc {

override fun <T> onNfcRead(

data: String,

ss: SmStateSubject<out SmState>,

onRead: (String) -> Unit,

(продолжается на следующей странице)
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(продолжение с предыдущей страницы)

onShow: (T) -> Unit

) {

// обработка NFC-данных

}

}

interface NavigatorNfc {

fun <T> onNfcRead(

data: String,

ss: SmStateSubject<out SmState>,

onRead: (String) -> Unit = {},

onShow: (T) -> Unit = {}

)

}

// MainActivity

navigator.onNfcRead<Map<String, String>>(it, getSts()) { data ->

nfcData = data

showNfcDialog.value = true

}

Пример MainActivity

class MainActivity : GsBaseActivity<AppNavigator>() {

@Composable

override fun ContentView(navigatorCtrl: NavigatorCtrl) {

AppTheme {

navigator.setBaseMenu(

listOf(

DrawerItem("Users") { getSts().postCallState<UsersState>() },

DrawerItem("Settings") { getSts().postCallState<SettingsState>() }

)

)

GsDrawerNavigatorView(navigatorCtrl)

}

}

override fun provideNavigator() = AppNavigator()

override fun provideDatabase() = AppDatabase.getInstance(this)

override fun provideFirstState() = UsersState()

}

Главная Activity предоставляет Navigator, базовое меню и первое состояние; дальше всё управление
переходит к StateManager и VCI-слою.

Навигационный слой GMF изолирует UI-логику от бизнес-кода: контроллеры формируют интеракции,
а Navigator обеспечивает плавные переходы, блокировки, меню и коммуникацию между экранами —
всё в нескольких вызовах без шаблонного кода.
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6 Контроллер представления

VCI (View-Controller Interface) располагается между серверной логикой State и Jetpack Compose-
представлением.
Ключевые функции контроллера:

� обновление экрана

� управление доступными действиями пользователя

� управление визуальными компонентами

� хранение данных главного потока
Контроллер переживает пересоздание представления, например при повороте экрана.

� предоставление навигационных функций

Внимание

Весь код, связанный с UI-слоем, должен находиться именно в представлении,
а бизнес-данные остаются внутри соответствующего State.

6.1 Создание контроллера

Контроллер представления должен наследовать базовый класс SmStateVciAbst<S : SmState>.

Шаблон

class UsersVci : SmStateVciAbst<UsersState>() {

/* nullable RecordList, чтобы не использовать lateinit */

private var usersORL = nullObservableRecordList

override fun onInit(state: UsersState) {

usersORL = state.usersRS.observableRecordList

}

override fun afterEnter(state: UsersState) {

usersORL = state.usersRS.observableRecordList // подписываемся на изменения

}

override fun newScreen() = provideUsersView(this)

override fun getTitle() = "Пользователи"

}
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6.2 Жизненный цикл

Фаза Описание

onInit(state)Вызывается один раз, когда VCI создан. Подписаться на RecordSet, настроить меню.
afterEnter(state)Каждый раз, когда State становится активным (после SmTrans или postSharedTask).

Обновить UI-данные, получить результат вычислений в стейте.
beforeExit(state)Перед уходом со страницы. Сохранить позицию списков, закрыть диалоги, отправить

накопленные изменения в стейт.

6.3 Общие свойства и методы

� navigator — Навигатор

� lazyListState — используется для хранения позиции основного списка представления

6.4 Работа с данными

Инициализация данных

Kotlin требует, чтобы все значения по возможности были инициализированы. Для удобства в контрол-
лере объявлены начальные значения:

� nullObservableRecordList

� nullObservableRecord

Подписка на набор строк

Compose-экраны не могут обращаться к БД и ресурсам серверного потока напрямую. Поэтому данные
обычно собираются в серверном потоке и сохраняются в состоянии. Для работы с данными, сохранён-
ными в состоянии, используется механизм привязки. Это позволяет безопасно использовать данные в
главном потоке, полученные из серверного потока.

Классы, публикующие данные для состояния:

� RecordSet

� SingleRecord

� RecordValue

Внутри себя они содержат:

� observableRecordList

� observableRecordHolder

Это позволяет использовать стандартные механизмы подписки Compose.

Привязка происходит в момент инициализации:

override fun onInit(state: UsersState) {

usersORL = state.usersRS.observableRecordList // подписались один раз

}

Пример использования привязанных данных:
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@Composable

fun UsersView(vci: UsersVci, pv: PaddingValues) {

val users by vci.usersORL.observeAsState() // � живой список

LazyColumn(Modifier.padding(pv)) {

items(users) { or ->

Text(or.getValueAsString("name"))

}

}

}

Подписка происходит в главном потоке. Все изменения данных, пришедшие из серверного потока,
автоматически попадают в Compose.

Чтение и модификация значений

Каждый элемент списка — это RecordData.
Доступ к полям идёт через геттеры/сеттеры.

Пример чтения:

val email = or.getValueAsString("email")

val age = or.getValueAsInt ("age")

Пример изменения:

IconButton(onClick = { or.setValue("isSelected", 1) }) { /* ... */ }

Примечание

Синхронизация изменений между главным потоком и серверным потоком происходит в
beforeExit() VCI.
Когда пользователь завершит работу с экраном, мы можем сбросить изменения в БД одной пачкой.

6.5 Планирование серверных команд

Основные понятия:

� задачи — выполняются в контексте текущего State, не меняют стек состояний. Одновременно
может
быть запланировано несколько задач.

� переходы — добавляют или удаляют состояния из стека состояний.
Одновременно может быть запланирован только один переход.
Переход происходит транзакционно: SQLite-транзакция, FileManager и пользовательский экран
согласованно перейдут в новое состояние или, в случае ошибки, произойдёт откат до начала
выполнения перехода.

См. также

� StateEventProcessor
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Для отправки действий в серверный поток используется планировщик getSts().

Методы getSts():

� postSharedTask:

withLock("Загрузка...") {

getSts<UsersState>().postSharedTask("refresh") { st ->

st.dbs.getApi(UserApi::class).updateFromServer()

}

.onSuccess {

// успешное завершение

// можем запланировать еще работу, переходы и т.д.

// например, getSts().postBack{}

}

.onFailure {

showBaseDialog("Ошибка", it.msg)

}

}

Совет

Используйте withLock, чтобы надёжно показать индикатор и гарантированно его убирать.

� postSharedTask()

Перед/после выполнения задачи происходит синхронизация данных между контроллерами.

� postAsyncTask()

Выполняет задачу без событий синхронизации.

� postCall()

Планирование перехода, при этом состояние добавляется в стек состояний; основной метод пере-
хода вперёд.

� postBack()

Планирование перехода назад (снятие состояния со стека); основной метод перехода назад.

� postCallWithResult()

Планирование перехода вперёд с ожиданием результата.

� postBackWithResult()

Планирование перехода назад (снятие состояния со стека) с результатом для ожидающего состо-
яния.

Внимание

Коллбеки onSuccess / onFailure приходят в главном потоке, блокировка UI не требуется.

Чтобы получить результат postCallWithResult, нужно вызвать зеркальный метод
postBackWithResult.
Если результат не будет передан при возвращении, произойдёт ошибка; сам результат обрабаты-
вается в параметре onResult.

При попытке вызвать postBackWithResult без ожидающего состояния также будет выброшена
ошибка.
Таким образом, разработчик всегда знает, когда что-то не пришло или было отправлено по ошибке.
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Примеры для каждого варианта:

postSharedTask — задача с синхронизацией и обработкой результата

fun refreshUsers() {

showLoadingView()

getSts().postSharedTask("refreshUsers") { st ->

st.dbs.getApi(UserApi::class).updateFromServer()

}

.onSuccess {

}

.onFailure {

stopLoadingView()

showBaseDialog(

title = "Ошибка",

msg = it.message ?: "Не удалось обновить данные",

isError = true

)

}

}

postAsyncTask — без синхронизации

fun sendAnalyticsEvent(event: String) {

getSts().postAsyncTask("analyticsEvent") { st ->

st.dbs.execSql(

"INSERT INTO AnalyticsLog(event) VALUES(?)",

event

)

}

// без `afterEnter`

}

postCall / postCallState — переход на новый экран

// Переход на экран камеры без результата

fun toCamera() {

showLoadingView()

getSts().postCallState<GsCameraState> { tb ->

tb.onBefore { bb ->

bb.afterSubscribe { stTo ->

stTo.cameraUseCaseState = GsCameraUseCaseState.IMAGE_CAPTURE

}

}

}

}
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postBack — возврат назад

override fun smPostBack() {

if (mediaPreviewState.value == MediaPreviewState.HIDDEN) {

getSts().postBack { /* можно настроить onBefore/onAfter, если нужно */ }

} else {

mediaPreviewState.value = MediaPreviewState.HIDDEN

showBottomBar()

}

}

postCallStateWithResult — переход с ожиданием результата

Пример: открываем камеру, ждём результат CameraResult, обрабатываем его в текущем VCI.

fun toQrScanner() {

showLoadingView()

getSts().postCallStateWithResult<GsCameraState, CameraResult>(

body = { tb ->

tb.onBefore { bb ->

bb.afterSubscribe { stTo ->

stTo.cameraUseCaseState = GsCameraUseCaseState.QRCODE_SCANNER

stTo.qrDelegate = this@CreateDemandVci

}

}

},

onResult = { result ->

stopLoadingView()

if (result is CameraResult.Qr) {

showBaseDialog(

title = "Информация",

msg = result.text

)

}

}

)

}

postBackWithResult — возврат назад с результатом

Экран-дочерний возвращает результат родителю:

fun backWithQr(qrCode: String) {

showLoadingView()

getSts().postBackWithResult(CameraResult.Qr(qrCode))

}

fun backErrorWithQr(e: Throwable) {

showLoadingView()

(продолжается на следующей странице)
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(продолжение с предыдущей страницы)

getSts().postBackWithResult(CameraResult.Error(e))

}

Композиция бизнес-логики

� Используйте getSts только из VCI.
Это позволит:

– избежать ошибок доступа к данным из разных потоков;

– повысить читаемость кода.

@Composable

fun Toolbar(vci: UsersVci) {

IconButton(onClick = { vci.refreshUsers() }) { /* ... */ }

}

// в VCI

fun refreshUsers() {

showLoadingView()

getSts().postSharedTask("refresh") { st ->

st.dbs.getApi(UserApi::class).syncFromServer()

}.onSuccess {

usersORL.refresh() // обновляем список

stopLoadingView()

}.onFailure {

showBaseDialog(

"Ошибка",

it.message ?: "Не удалось обновить данные",

isError = true

)

}

}

6.6 Меню

Список пунктов меню задаётся в событии afterEnter:

override fun afterEnter(state: UsersState) {

topGsMenuItems.setOf(

GsMenuItem("Обновить") { refresh() },

GsMenuItem("Выход") { navigator.doLogout() }

)

bottomGsMenuItems.single("Добавить") { addUser() }

}
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6.7 События навигации

� onBack — обработчик кнопки «Назад».

6.8 Расширение навигатора

Методы расширения навигатора объявлены в интерфейсе NavigableVcp и могут быть реализованы в
контроллере представления.

Можно переопределить:

� newScreen — представление типа VcpScreen

� getTitle — заголовок

� topGsMenuItems — элементы TopBar

� bottomGsMenuItems — элементы BottomBar

� showFAB — видимость FAB

� Fab — собственная реализация @Composable Fab()

� fabClick — действия на FAB

Пример FAB

override fun showFAB() = usersORL.size > 0

override fun Fab() =

SmallFloatingActionButton(onClick = ::addUser) {

Icon(Icons.Default.PersonAdd, contentDescription = null)

}

6.9 Стандартные диалоги

showBaseDialog(

title = "Удалить пользователя?",

okText = "Да",

dismissText = "Нет",

onOk = ::confirmDelete

)

6.10 Event Bus

Flow-шина событий работает на всё приложение:

subscribeEventBus<SyncDone>("SyncDone") {

navigator.setNeedSync(false)

}
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6.11 VcpScreen

Класс-адаптер, который отдаёт Composable-дерево как функцию Content(pv: PaddingValues).
Именно screen попадает в Navigator для реального рендеринга во вкладку стека.
PaddingValues определяет размеры отступов для меню.

6.12 Стандартные делегаты

Делегаты типизируют стандартные события для обработки сообщений.

Стандартные делегаты:

� QrCodeScannerDelegate

Внимание

Экспериментальный функционал, находится в разработке.

6.13 Полный пример

class DemandListVci : SmStateVciAbst<DemandListState>() {

private var demandORL = nullObservableRecordList

val isRefreshing = mutableStateOf(false)

/* 1. Init one time */

override fun onInit(state: DemandListState) {

demandORL = state.demandRS.observableRecordList

onBack { smVci -> smVci.smPostBack() }

}

/* 2. Every enter */

override fun afterEnter(state: DemandListState) {

demandORL = state.demandRS.observableRecordList

}

/* 3. Exit */

override fun beforeExit(state: DemandListState) = Unit

/* 4. UI */

override fun newScreen() = provideDemandListView(this)

override fun getTitle() = "Заявки"

/* 5. Actions */

fun refresh() {

showLoadingView()

getSts<DemandListState>().postSharedTask("refresh") { st ->

st.dbs.getApi(EamDemandApi::class).syncFromServer()

}.onSuccess {

stopLoadingView()

}.onFailure {

(продолжается на следующей странице)
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(продолжение с предыдущей страницы)

stopLoadingView()

showBaseDialog("Ошибка", it.message ?: "")

}

}

}

6.14 Хорошие практики

� Не держите ссылок на RecordData, всегда получайте новую через observeAsState().
Каждый раз там будет актуальная строка.

� Вызывайте только публичные методы VCI.
Не трогайте dbs из Composable.

� Из VCI в State переходите через postSharedTask()/postAsyncTask().
Никогда не ходите в State напрямую.

� Держите бизнес-логику в State.

� Держите сетевые/SQL-операции — в Api/Pkg.

� Помните: VCI — это тонкий контроллер UI.
Он должен оставаться ответственным за подписки, показ, навигацию и т.д.
Изоляция VCI позволяет делать код простым, тестируемым и устойчивым к изменениям.

� Используйте собственные ExecutorSubscription для Bluetooth, камеры, видео и т.д. вместо
postAsyncTask.
Это снизит нагрузку на серверный поток.

6.15 Плохие практики

� Не злоупотребляйте методом refreshView().
Этот метод уже вызывается навигатором, ручной вызов нужен только в особых случаях.

7 Сессия

7.1 Транзакционный контекст

GsSession — компонент, отвечающий за транзакционную обработку данных. Содержит:

� контекст транзакции:

– кэш, который закрепляет одну объект-строку на весь жизненный цикл транзакции;

– список изменений
При завершении транзакции изменения собираются в пачки insert / update / delete, ко-
торые сбрасываются в БД по 500 записей;

– методы (begin / commit / rollback);

– транзакционный кэш (rowCache);

– списки изменений;

� Room-базу данных (RoomDatabase);
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� методы для работы с сессией базы данных:

– нативные запросы (query*);

� файловую подсистему (FileManager);

� инъекции зависимостей для контроллеров сессии (Api и Pkg).

Любой код, работающий с данными за пределами представления, стоит располагать в контроллерах
сессии.
Это позволяет гарантировать целостность транзакций и отсутствие гонок.

7.2 Инъекция зависимостей

Контроллеры сессий создаются с автоматической инициализацией необходимых ссылок (инъекцией
зависимостей).
Для управления используются следующие аннотации:

� @GsApiBean, @GsPkgBean, @GsBean — генерируют расширения вида GsSession.getUserApi() и
фабрику GlobalFactory,
избавляя разработчика от ручного Dagger/Hilt и позволяя создавать компоненты по имени без
дополнительного кода.

Примечание

Изменение одного класса приводит лишь к перегенерации связанного файла, сборка проекта оста-
ётся быстрой.

См. также

� модуль di-processor

7.3 Контроллеры сессий

Контроллер сессии создаётся один раз на сессию.

Api

Используется для организации бизнес-логики в разрезе сущности базы данных.
Содержит методы работы со строками таблицы:

� создание
При этом автоматически генерируется идентификатор записи;

� удаление;

� обновление;

� загрузка;

� кэширование.
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DbPkg

Используется для организации общей транзакционной бизнес-логики.

Выдача пакетов

val userApi = session.getApi(UserApi::class) // способ без генерации

val userApi = session.getUserApi() // способ с генерацией

� При первом запросе объект создаётся, вызывается enterSession(), дальше он возвращается из
кэша.

� recreateApi() удаляет старый экземпляр и тут же создаёт новый — удобно после logout.

7.4 Потоковая модель

Контроллеры сессий являются потоконебезопасными объектами, рассчитанными на работу в серверном
потоке.

Внимание

Не пытайтесь обращаться к контроллерам сессии из главного потока.

7.5 Работа с транзакцией

� flush() — собирает изменения из всех Api и применяет их пачками по 500 строк.

� commit() — сохраняет изменения.

� rollback() — откатывает изменения и очищает кэш.

Работа с сырыми запросами

� querySingleMap

val map = session.querySingleMap(

"SELECT * FROM User WHERE gid = ?",

arrayOf(gid)

)

� querySingleData

// map → data-class

data class MiniUser(val name: String, val age: Int?)

val mu: MiniUser? = session.querySingleData(

MiniUser::class,

"SELECT sName AS name, nAge AS age FROM User WHERE id = ?",

arrayOf("57")

)
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8 Хранение данных

8.1 Реляционные данные

Для хранения реляционных данных используется СУБД SQLite и ORM Room.

Для подключения базы данных необходимо:

1. Подключить зависимости в Gradle.

2. Создать класс базы данных.

3. Зарегистрировать базу данных в MainActivity.
В случае, если MainActivity унаследована от GsBaseActivity, добавьте в класс:

override fun provideDatabase(): PrototypeDatabase =

RoomDbSingleton.getInstance(this, "PrototypeDatabase")

Класс базы данных

// db/AppDatabase.kt

@Database(

entities = [SystemEntity::class, User::class],

version = 1,

exportSchema = false

)

abstract class AppDatabase : RoomDatabase() {

abstract val userDao: UserDao

companion object {

@Volatile private var INSTANCE: AppDatabase? = null

fun getInstance(ctx: Context): AppDatabase =

INSTANCE ?: synchronized(this) {

INSTANCE ?: Room.databaseBuilder(

ctx,

AppDatabase::class.java,

"AppDB"

).build().also { INSTANCE = it }

}

}

}
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8.2 Файлы

Файлы сохраняются в каталоге приложения согласно настройке DbConfig.dataPath.

Для работы с файлами используется FileManager в GsSession.
Он позволяет организовать транзакционную работу с файлами.

Принципы работы:

� любые загруженные/созданные файлы сначала пишутся во временную область;

� при commit() — перемещаются в постоянную область;

� при rollback() — удаляются.

Таким образом БД и файлы остаются синхронными.

Работа с файлами

val localPath = takePhoto() // /cache/...

val draft = dbs.fileManager.copyToSendDir(localPath)

gate.upload(draft) // сервер принял → HTTP 200

dbs.commit() // файл переносится в /data/

Если сеть упала — вызов rollback() удалит файл из черновиков и откатит БД.

9 Контроллер таблицы

Контроллер таблицы (Api) служит для транзакционной работы со строками базы данных.

Api-контроллер предоставляет:

� кэш строк :

– один объект Entity — одна строка;

– повторный load(id) вернёт тот же экземпляр;

� список изменений — изменения накапливаются до момента flush();

� flush() — все изменения (inserted / updated / deleted) собираются в GsSession.flush() и
пишутся пачками;

� счётчик идентификаторов — insert() получает уникальный id из счётчика.

Для создания контроллера:

1. Создайте базу данных.

2. Создайте сущность.

3. Создайте Dao.

4. Создайте Api-контроллер.

5. Скомпилируйте проект.
При компиляции проекта произойдёт генерация необходимых классов.
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9.1 Сущность

Сущность описывает таблицу базы данных в терминах ORM.
Для сущности генерируется Dao, а также создаётся таблица в базе данных.

Для создания сущности:

1. Создайте data class.

2. Унаследуйте класс от BaseEntity.

Совет

Не создавайте поле id, так как оно определено в BaseEntity.

3. Добавьте аннотацию @Entity.

4. Укажите в аннотации имя таблицы базы данных.

Внимание

Имя таблицы должно соответствовать имени класса.

5. Добавьте класс в список entities базы данных.

Пример:

@Database(

entities = [SystemEntity::class, User::class]

)

abstract class AppDatabase : RoomDatabase()

Пример сущности:

// db/User.kt

@Entity(tableName = "User")

data class User(

var sName: String? = null,

var nAge : Int? = null

) : BaseEntity() {

override fun copyEntity() = copy()

}
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9.2 Dao

Dao содержит набор сгенерированных на основе сущности методов для реализации ORM.

1. Создайте абстрактный класс.

2. Унаследуйте его от BaseDao.
В качестве типа укажите сущность для этого Dao.

3. Аннотируйте класс аннотацией @Dao.

4. Добавьте переменную с Dao в класс базы данных.

Пример:

abstract class AppDatabase : RoomDatabase() {

abstract val userDao: UserDao

}

Пример Dao:

// db/UserDao.kt

@Dao

abstract class UserDao : BaseDao<User>()

9.3 Создание Api

1. Создайте класс.
Класс должен принимать параметр ctx: ApiBeanContext. Контекст нужен для работы механиз-
ма инъекции зависимостей.

2. Унаследуйте класс от DbBaseApiGen.
DbBaseApiGen автоматически подставляет dbRoom и dbSession через DI-процессор.

@GsApiBean

class UserApi(ctx: ApiBeanContext)

: DbBaseApiGen<User, UserDao, AppDatabase>(ctx) {

override val dao get() = dbRoom.userDao

override fun newEntity() = User()

fun seedDemo() {

// инициализация демо-данных

}

}
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9.4 Создание Api на основе рефлексии

1. Создайте класс.

2. Унаследуйте класс от DbBaseApi.

Внимание

Раздел находится в разработке.

9.5 Оптимизация производительности

� Делайте insertAll(list) через Api — это всегда batch без forEach.

� Используйте rowCache для реконфигурируемых фильтров:
запросили 500 id, фильтруете в Kotlin-коде, не дёргая SQL повторно.

10 Кодогенерация

Кодогенерация позволяет автоматизировать рутинные операции.

10.1 DI-процессор

Автоматизирует работу с инъекциями зависимостей в GsSession.

Отвечает за генерацию:

� Session-extensions

Файл ${Cls}SessionGen.kt добавляет три метода к GsSession:
getCls(), destroyCls(), recreateCls().

� GlobalFactory.kt

Для всех @GsBean создаётся объект-фабрика с thread-safe ConcurrentHashMap.
Позволяет получить, пересоздать или обнулить singleton без DI-контейнера.

� MainStorage.kt

Минимальное потокобезопасное хранилище для глобальных бинов.

Примечание

При необходимости можно добавить произвольный DI-фреймворк, например Dagger / Hilt.
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Ключевые аннотации

Анно-

тация

Применяется к классу-бину Жизненный цикл Как вызывается

@GsPkgBeanPackage-класс, работающий
внутри GsSession

Создаётся и кеширует-
ся на время сессии

session.get<ИмяPkg>() (сге-
нерированный extension)

@GsApiBeanAPI-класс поверх Room То же, что и
@GsPkgBean

session.get<ИмяApi>()

@GsBean Глобальный компонент (пар-
сер, crypto-утилита и др.)

Singleton всего процес-
са

GlobalFactory.get<Имя>()

Пример

@GsApiBean

class UserApi(ctx: ApiBeanContext)

: DbBaseApiGen<User, UserDao, AppDb>(ctx) { /* ... */ }

@GsPkgBean

class SyncPkg(ctx: PkgBeanContext) : DbPkg2(ctx)

@GsBean

class CryptoUtil // не зависит от сессии

// Работаем в State или другом серверном коде

val api = session.getUserApi() // сгенерировано

val pkg = session.getSyncPkg()

val crypto = GlobalFactory.getCryptoUtil()

Подключение к проекту DI

plugins {

id("com.google.devtools.ksp") version "1.9.22-1.0.17"

}

dependencies {

ksp(project(":di-processor"))

}

37



Правила создания

� Конструктор аннотированного класса должен принимать ровно один аргумент-контекст
(ApiBeanContext или PkgBeanContext).

� Для singleton с побочным состоянием необходимо использовать @GsBean и управлять жизненным
циклом вручную через GlobalFactory.

Диагностика ошибок

Сгенерированный код лежит в $buildDir/generated/ksp/.../di/.
При любой проблеме (цикличность, нарушение областей) KSP прерывает компиляцию и выводит по-
нятное сообщение вида:
Cycle detected: a.b.C -> x.y.D -> a.b.C.

Исправьте зависимости — Gradle пересоберётся без перезапуска IDE.

10.2 Room-процессор

Отвечает за генерацию:

� базы данных;

� Dao.

Подключение к проекту Room

dependencies {

ksp(libs.androidx.room.compiler)

}

10.3 Результат кодогенерации

Получается один JAR < 1 МБ, не требующий рефлексии и не трогающий рантайм,
что позволяет легко обфусцировать код.

11 Плагин активити

Activity Plugin — это автономный модуль, который встраивается прямо в GsBaseActivity, добавляя
ей новую функцию (NFC-сканер, BLE-монитор, WebRTC-звонки и т.п.) без изменений в бизнес-логике
экранов и без пересборки ядра GMF.

К плагинам активити можно получать доступ из главного потока.

Базовые плагины (камера, NFC, QR-сканер) включены «из коробки» и будут пополняться; разработчик
может добавить собственный, реализовав тот же интерфейс.
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11.1 Мотивация

� Изолировать платформенные API: весь код работы с NFC, камерой или сенсорами живёт в пла-
гине, а приложение общается только через колбэк-интерфейсы.

� Повторно использовать логику: один плагин можно подключить сразу во многие приложения.

� Синхронизировать жизненный цикл: плагин получает те же события (onCreate/Resume/
Pause...), что и Activity, и не нарушает транзакции State Manager’а.

11.2 Контракт

interface ActivityPlugin : IPkg {

/* 1. Инициализация */

/** Один раз до показа UI. Можно выполнять работу в IO-диспетчере. */

suspend fun initializeAsync(activity: GsBaseActivity<*>) {}

/** Вызывается сразу после инициализации UI. */

fun onInitializeUi(activity: GsBaseActivity<*>, navigator: Navigator) {}

/* 2. Жизненный цикл */

fun onCreate (activity: GsBaseActivity<*>) {}

fun onStart (activity: GsBaseActivity<*>) {}

fun onResume (activity: GsBaseActivity<*>) {}

fun onPause (activity: GsBaseActivity<*>) {}

fun onStop (activity: GsBaseActivity<*>) {}

fun onDestroy(activity: GsBaseActivity<*>) {}

/** Activity получила новый Intent (например, NFC-метку). */

fun onNewIntent(activity: GsBaseActivity<*>, intent: Intent) {}

}

11.3 Подключение плагина в Activity

class MainActivity : GsBaseActivity<AppNavigator>() {

override fun provideModules(): List<KClass<out ActivityPlugin>> =

listOf(MyAnalyticsPlugin::class)

}

� Тип-список — передаёте KClass; экземпляр будет лениво создан через session.getSimplePkg().
Так удобнее, если плагин в разных модулях и нужен DI-контейнер.
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11.4 Порядок инициализации

1. GsBaseActivity собирает StateManager и Navigator.

2. Вызывает plugin.initializeAsync() параллельно с инициализацией StateManager’а; здесь
выполняются тяжёлые операции (запуск CameraX, чтение лицензий и т.п.).

3. UI создан — onInitializeUi() даёт плагину объект Navigator.

4. Далее события onCreate/Start/Resume... приходят в том же порядке, что и в Activity.

11.5 Обмен данными с экраном

� Плагин хранит публичные MutableStateFlow / Callback-свойства — ViewModel или VCI подпи-
сывается и получает данные.

� Если нужно уведомить только текущий экран, проще всего передать лямбду-делегат при вызове
(в afterEnter), как показано в NFC-примере, либо получить плагин через сессию.

11.6 Работа с Navigator

В onInitializeUi() плагин может:

� показать диалог через navigator.createDialog(...);

� запустить экран через navigator.setBaseMenu() или вставить SmTrans в текущий стек.

Главное — не обращаться к UI до этой фазы: до создания Navigator компоновка ещё не готова.

11.7 Пример NFC-плагина

class NfcActivityPlugin : ActivityPlugin {

private val isWriteNow = AtomicBoolean(false)

private var adapter: NfcAdapter? = null

var onRead: (String) -> Unit = {}

override suspend fun initializeAsync(activity: GsBaseActivity<*>) {

adapter = activity.getSystemService(NfcManager::class.java).defaultAdapter

setupForegroundDispatch(activity)

}

override fun onResume(activity: GsBaseActivity<*>) {

adapter?.enableForegroundDispatch(activity, pendingIntent, filters, null)

}

override fun onPause(activity: GsBaseActivity<*>) {

adapter?.disableForegroundDispatch(activity)

}

override fun onNewIntent(activity: GsBaseActivity<*>, intent: Intent) {

if (!isWriteNow.get()) {

val payload = readNdef(intent)

onRead(payload)

(продолжается на следующей странице)
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(продолжение с предыдущей страницы)

}

}

/* остальной код — чтение, запись, шифрование */

}

� Плагин полностью управляет NfcAdapter, не нагружая Activity.

� В onRead передаёт данные обратно в экран (VCI) или State.

Activity-плагины позволяют подключать новые аппаратные возможности так же легко, как dependency
в Gradle. Всё управление происходит в одном месте, жизненный цикл синхронизирован, а бизнес-код
экранов остаётся чистым.

12 Дополнительные контроллеры

12.1 Pkg

Используется для организации бизнес-логики, не требующей прямого доступа к сессии.

Интерфейс Роль

GsSession Контракт; доступен везде через DI или StateManager.
GsSessionImpl Единственная реализация; создаётся внутри StateManager.
IApi / IDbPkg Сессионные singletons; живут до закрытия текущей сессии.
IPkg Пакеты без доступа к БД; кэшируются отдельно от сессионных компонентов.

Внимание

Экспериментальный функционал, находится в разработке.

13 Приложение A

13.1 Ключевые усложнения нативного SDK

� Несогласованные фоновые операции
REST-запрос стартовал в IO, запись в SQLite — в Default, обратное уведомление пришло в
mainThread. Малейшая задержка вызывала гонку и слепой интерфейс.

� Сложная транзакционность
Часть данных уже записана в БД, часть файлов загрузилась, а сеть оборвалась. Вручную отка-
тить всё — отдельная задача со своими багами.

� Boilerplate
Room → Repository → UseCase → ViewModel → LiveData → Compose. Каждая сущность дуб-
лирует набор полей — правка трёх строк превращалась в десять правок и pull-request на 200
строк.
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� Непредсказуемый офлайн
За очередь задач отвечали отдельные сервисы, и как только бизнес-логика усложнялась, синхро-
низация также усложнялась и появлялись трудноуловимые баги.

� Трудная интеграция железа
Камера, NFC, голосовой ввод требовали кастомных сервисов, контекстных разрешений и много-
словного DI-кода.

Детальное описание преодолённых усложнений

Усложнение Решение, предоставляемое GlobalErp Mobile Framework

Последовательное выполнение
долгих операций блокирует UI

Вся логика БД, сетевые вызовы и файловые операции выпол-
няются в едином серверном потоке. Поток UI занят только от-
рисовкой.

Race condition между результата-
ми запросов

Подписка осуществляется на ObservableRecord; события до-
ставляются строго в порядке фиксации транзакции.

Разрозненные реализации retry-
логики для REST, файлов и ло-
кальной БД

Pkg, Api, FileManager работают внутри той же транзакции
GsSession. commit / rollback выполняются единообразно.

Сложность атомарного отката:
часть данных уже записана, часть
— нет

GsSession объединяет БД, файлы, сеть и любые пакеты, со-
зданные пользователем: единая транзакция обеспечивает со-
гласованный откат.

Отмена длительной операции
оставляет систему в непредсказу-
емом состоянии

InterruptingLock прерывает SQL, REST и вычисления; стек
состояний автоматически откатывается к стабильному экрану.

Навигация разбросана между
Activity, флагами back stack и
коллбэками

Стек-ориентированная навигация (SmState + SmTrans) управ-
ляется на серверном потоке.

Решения о переходах принимают-
ся до синхронизации с UI.
Передача данных между слоя-
ми требует множества Mapper /
Repository / ViewModel

Цепочка SQL → RecordSet → Compose избавляет от промежу-
точных слоёв. Данные приходят в UI напрямую.

Хрупкий офлайн-режим, необхо-
димость писать очередь синхрони-
зации

Все изменения фиксируются локально; синхронизация с серве-
ром оформляется единообразно через очереди задач и Flow, без
разрозненных сервисов.

Сложная интеграция аппаратных
функций (камера, NFC, QR-
сканер)

Плагины ActivityPlugin подключаются в GsBaseActivity.
Дополнительных DI-конфигураций не требуется.

Несогласованная обработка аппа-
ратной кнопки «Назад» и жестов

Navigator централизованно управляет TopBar, BottomBar, FAB
и back-навигацией для всех экранов.

Невозможность гарантировать по-
рядок выполнения фоновых задач
при навигации

Задачи (postSharedTask, postAsyncTask) регистрируются в
очереди событий State Manager. Выполняются строго после за-
вершения предыдущих транзакций.

Отсутствие единых правил для те-
стирования

State / VCI можно запускать с параметром database = null;
достаточно
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