
GSMobileDevDoc
Выпуск 0.0.7

Global System

февр. 03, 2026

Содержание

1 Пролог 3

2 Введение 3

2.1 Ключевые возможности . 3
2.2 Архитектура . 4
2.3 Тестирование и масштабирование . 6

3 Быстрый старт 7

3.1 Шаблон проекта . 7

4 Состояние 11

4.1 Минимальный скелет . 12
4.2 Жизненный цикл . 13
4.3 Контейнеры данных . 13
4.4 Исполнители . 14
4.5 Сквозной переход . 14
4.6 Отмена длительных операций . 15
4.7 Хорошие практики . 15

5 Навигатор 15

5.1 Пользовательский Navigator . 16
5.2 Отображение экрана . 16
5.3 TopBar . 16
5.4 BottomBar . 17
5.5 Drawer . 17
5.6 Список глобальных переходов . 17
5.7 FAB . 17
5.8 Блокировка и диалоги . 17
5.9 Шина событий . 18
5.10 Индикатор синхронизации . 18
5.11 Примечание . 18

6 Контроллер представления 20

6.1 Создание контроллера . 20
6.2 Жизненный цикл . 21
6.3 Общие свойства и методы . 21
6.4 Работа с данными . 21

1

6.5 Планирование серверных команд . 22
6.6 Меню . 26
6.7 События навигации . 27
6.8 Расширение навигатора . 27
6.9 Стандартные диалоги . 27
6.10 Event Bus . 27
6.11 VcpScreen . 28
6.12 Стандартные делегаты . 28
6.13 Полный пример . 28
6.14 Хорошие практики . 29
6.15 Плохие практики . 29

7 Сессия 29

7.1 Транзакционный контекст . 29
7.2 Инъекция зависимостей . 30
7.3 Контроллеры сессий . 30
7.4 Потоковая модель . 31
7.5 Работа с транзакцией . 31

8 Хранение данных 32

8.1 Реляционные данные . 32
8.2 Файлы . 33

9 Контроллер таблицы 33

9.1 Сущность . 34
9.2 Dao . 35
9.3 Создание Api . 35
9.4 Создание Api на основе рефлексии . 36
9.5 Оптимизация производительности . 36

10 Кодогенерация 36

10.1 DI-процессор . 36
10.2 Room-процессор . 38
10.3 Результат кодогенерации . 38

11 Плагин активити 38

11.1 Мотивация . 39
11.2 Контракт . 39
11.3 Подключение плагина в Activity . 39
11.4 Порядок инициализации . 40
11.5 Обмен данными с экраном . 40
11.6 Работа с Navigator . 40
11.7 Пример NFC-плагина . 40

12 Дополнительные контроллеры 41

12.1 Pkg . 41

13 Приложение A 41

13.1 Ключевые усложнения нативного SDK . 41

2

1 Пролог

GlobalErp Mobile Framework является платформой быстрой разработки мобильных приложений от
компании GlobalERP.

Фреймворк изолирует прикладного разработчика от системной бизнес-логики и задаёт единый стиль на
уровне проекта, что позволяет эффективно разрабатывать приложения любого масштаба. Подробнее
смотрите ключевые возможности.

Фреймворк позволяет избежать типовых усложнений, с которыми сталкивается разработчик мобиль-
ных приложений при работе со стандартным SDK.

2 Введение

2.1 Ключевые возможности

� Перенос вычислений в серверный поток
Главный поток никогда не блокируется: фрейм-рендер выполнился — задача ушла в очередь,
анимация пользовательского интерфейса не зависит от бизнес-логики.

� Хранение данных

� Транзакционная обработка данных GsSession:

– SQLite, файлы, сетевые отклики — коммитятся или откатываются одним вызовом.

– Встроенный генератор ID и горячий кэш сущностей.

� Автоматизация работы с инъекциями зависимостей

� Адаптированный MVVM-паттерн

� Навигация между представлениями

� Планирование серверных команд
Позволяет избавиться от сложных асинхронных запусков.

� Observable-слой данных
RecordSet, SingleRecord, RecordValue<T> передают изменения сразу в Compose-дерево, без необ-
ходимости писать адаптеры.

� Плагин-подход к железу
ActivityPlugin регистрируется в GsBaseActivity; доступ к NFC или камере получаем без
Dagger/Hilt.

� Горячий офлайн
Легко настраивать работу, копить данные и синхронизировать по необходимости
за счёт встроенной поддержки БД .

� Простое тестирование
State/VCI можно запустить с database = null, логика тестируется без Android-эмулятора, при
этом транзакционная модель сохраняется.

3

2.2 Архитектура

Взаимодействие слоев

Основные понятия

� Главный поток (mainThread) — поток взаимодействия с пользователем; этот поток не должен
блокироваться. Рендерит Compose, обрабатывает жесты и никогда не исполняет длительных опе-
раций.

� Серверный поток (serverThread) — поток для выполнения синхронной бизнес-логики и син-
хронизации с асинхронными задачами. Последовательно выполняет SQL, операции с файлами,
трансформации стека и любые другие долгие операции. Все вызовы VCI к тяжёлым ресурсам
отправляются сюда через postSharedTask или postAsyncTask (минуют карусель событий).

� Сессия (GsSession) — сессия работы с данными.
Содержит контекст для хранения и управления компонентами, необходимыми для обработки
данных.

� Состояние (State) — содержит данные и бизнес-логику представления, работающую в серверном
потоке.

� Стек состояний — хранит историю открытых представлений. Верхнее представление отобража-
ется на экране.
Позволяет пользователю возвращаться на предыдущее представление.

4

� Контроллер представления (VCI) — содержит данные и бизнес-логику представления в главном
потоке.

� Представление (VcpScreen) — декларация правил отрисовки представления с использованием
библиотеки Compose.

� Контроллер сессии (Api, Pkg) — контроллер сессии обрабатывает бизнес-логику в серверном
потоке в разрезе сущностей базы данных или их групп.

� Навигатор (Navigator) — занимается компоновкой и управлением представлениями приложения.

� Главная активность (MainActivity) — точка входа Android-приложения, подробнее смотрите
руководство по разработке на платформе Android.

Отдельный серверный поток

Отдельный серверный поток для выполнения бизнес-логики лучше, чем рассыпанные потоки
launch(Dispatchers.IO), так как позволяет достичь:

� более высокой производительности на последовательных вычислениях за счёт отсутствия необ-
ходимости
межпотоковой синхронизации;

� более простой разработки и отладки за счёт:

– последовательного выполнения, что позволяет использовать классические принципы струк-
турного программирования;

– полностью воспроизводимого stack trace —
нет прыжков между диспатчерами;

– декларативной двусторонней синхронизации между главным и серверным потоком;

– контролируемой отмены:
InterruptingLock.validate() бросит исключение на любой стадии, стек откатится, а UI
мирно вернётся к последнему стабильному экрану.

Адаптированный MVVM-паттерн

Обеспечивает:

� Предсказуемый интерфейс
Стабильный FPS даже на сложных формах.

� Единый стиль
Все экраны одинаково устроены, code review смотрит в основном на логику, а не на повторяющи-
еся слои.

Детализация принципа view–viewmodel–model:

� View — декларация интерфейса на Compose-UI, объявляется в VCI .

� viewmodel — разбит на 2 слоя для отделения бизнес-логики главного и серверного потоков:

– VCI — бизнес-логика для работы в главном потоке, а также подписка на данные state.

– State — бизнес-логика для работы в серверном потоке, а также сбор данных для представ-
ления.

� model:

– Api — контроллер таблицы для обработки хранимых данных;

5

– Entity — модель хранимых данных.

Жизненный цикл экранов

Таблица ниже отображает карусель событий, которые произойдут при открытии и закрытии экрана.

Событие Когда вызывается Что делать

onInit(State,
VCI)

Сразу после создания,
синхронно

Подготовить запросы к БД, инициализировать RecordSet

afterPush(State)State помещён в стек Подписаться на шину, запустить лёгкие preload-задачи
onVisit() :

SmTrans(State)
Сразу после push, но
до afterEnter

Вернуть SmTrans для мгновенного перенаправления (на-
пример Splash → Login) или null

afterEnter(State)Каждый раз, когда
State стал активным

Обновить данные, запустить postSharedTask; триггерится
на каждую фоновую задачу

afterEnter(VCI)UI создан и синхрони-
зирован с главным по-
током

Восстановить scroll-позицию, открыть диалоги, получить
данные из State — главная точка синхронизации перед по-
казом экрана

beforeExit(VCI)UI ещё на экране, но
пользователь уходит

Сохранить scroll, закрыть диалоги, очистить временные
данные

beforeExit(State)UI уже закрыт, тран-
закция ещё открыта

flush() RecordSet, финальные изменения в БД, подготовка
к уходу

onError(e)(State)Любая необработан-
ная ошибка внутри
State

Вернуть SmTrans на экран ошибки или кастомизировать об-
работку

onClose(State) State удалён из стека
окончательно

Отписаться от шины, освободить ресурсы

Дополнительные понятия

� Менеджер состояний(StateManager) - отвечает за обработку очереди событий для серверного
потока и транзакционной логики обработки переходов между состояниями. StateManager обра-
щается к UI из серверного потока безопасно через блокировки, поэтому состояние стека остаётся
консистентным.

2.3 Тестирование и масштабирование

� Любой State и VCI можно запустить с database = null логика тестируется без эмулятора, тран-
закционная модель при этом сохраняется.

� Новый экран требует три файла — State, VCI, Compose-View — и не затрагивает существующий
код; команда растёт линейно, не переписывая инфраструктуру.

6

3 Быстрый старт

Ниже — минимальный, но полностью рабочий пример приложения на GMF.
Мы пройдём по всем слоям: от Entity до Compose-экрана, подключим DI-генератор и объясним, куда
поместить каждый файл.

3.1 Шаблон проекта

Зависимости в Gradle

// build.gradle (модуль :app)

plugins {

id("com.android.application")

kotlin("android")

alias(libs.plugins.google.devtools.ksp) // KSP для DI-процессора

}

android { /* стандартная конфигурация */ }

dependencies {

implementation(libs.kotlinx.coroutines.android)

implementation(libs.androidx.compose.material3)

ksp(libs.androidx.room.compiler)

implementation(project(":common")) // GMF

ksp(project(":di-processor")) // кодогенерация @GsApiBean / @GsPkgBean

}

Скелет каталогов

src/main/java

ru.my.app

api/ – классы доступа к БД (UserApi и др.)

db/ – Entity, Dao, AppDatabase

pkg/ – сетевые / сервисные пакеты (опционально)

ui/

| users/

| UsersState.kt

| UsersVci.kt

| view/

| UsersView.kt

| ViewProvider.kt

MainActivity.kt – точка входа

Delegates.kt – DataStore, расширения навигатора и т.д.

7

ORM-классы

// db/User.kt

@Entity

data class User(

var name : String? = null,

var email : String? = null,

var age : Int? = null,

) : BaseEntity() {

override fun copyEntity() = copy()

}

// db/UserDao.kt

@Dao

abstract class UserDao : BaseDao<User>()

Room-база

// db/AppDatabase.kt

@Database(

entities = [SystemEntity::class, User::class],

version = 1,

exportSchema = false

)

abstract class AppDatabase : RoomDatabase() {

abstract val userDao: UserDao

companion object {

@Volatile private var INSTANCE: AppDatabase? = null

fun getInstance(ctx: Context): AppDatabase =

INSTANCE ?: synchronized(this) {

INSTANCE ?: Room.databaseBuilder(

ctx,

AppDatabase::class.java,

"AppDB"

).build().also { INSTANCE = it }

}

}

}

Если нужна базовая реализация БД, можно использовать в MainActivity:

override fun provideDatabase(): PrototypeDatabase =

RoomDbSingleton.getInstance(this, "PrototypeDatabase")

и не создавать companion object в классе БД для хранения инстанса.

8

DI-процессор

Аннотация @GsApiBean говорит KSP-процессору сгенерировать расширение
GsSession.getUserApi() — обращение к нашему API без строковых имён.

// api/UserApi.kt

@GsApiBean

class UserApi(ctx: ApiBeanContext)

: DbBaseApiGen<User, UserDao, AppDatabase>(ctx) {

override val dao get() = dbRoom.userDao

override fun newEntity() = User()

/** Демо-данные при первом старте */

fun seed() {

if (fetchAll().isNotEmpty()) return

listOf(

"Alice" to "alice@site.com",

"Bob" to "bob@site.com",

"Chloe" to "chloe@site.com",

).forEach { (n, e) ->

insert().update {

it.name = n

it.email = e

it.age = (20..45).random()

}

}

flush()

}

}

Бизнес-логика экрана

// ui/users/UsersState.kt

class UsersState : SmStateAbst<UsersState>() {

val usersRS = newRecordSet() // RecordSet

override fun onInit() {

usersRS.onPopulate { q ->

q.query("SELECT * FROM User ORDER BY name")

}

}

override fun afterEnter() {

dbs.getUserApi().seed() // лениво создаётся через DI

usersRS.refresh()

}

override fun newVci(): SmStateVcp = UsersVci()

}

9

Контроллер главного потока

// ui/users/UsersVci.kt

class UsersVci : SmStateVciAbst<UsersState>() {

var usersORL = nullObservableRecordList

override fun afterEnter(st: UsersState) {

usersORL = st.usersRS.observableRecordList

}

override fun newScreen() = provideUsersView(this)

override fun getTitle() = "Пользователи"

}

VCI — View Control Interface

Пользовательский интерфейс

// ui/users/view/UsersView.kt

fun provideUsersView(vci: UsersVci) = object : VcpScreen {

@Composable

override fun Content(pv: PaddingValues) {

val users by vci.usersORL.observeAsState()

LazyColumn(

Modifier

.fillMaxSize()

.padding(pv)

) {

items(users) { or ->

Card(

modifier = Modifier

.fillMaxWidth()

.padding(8.dp),

onClick = { /* переход на карточку */ }

) {

Column(Modifier.padding(16.dp)) {

Text(

or.getValueAsString("name"),

style = MaterialTheme.typography.titleMedium

)

Text(

or.getValueAsString("email"),

style = MaterialTheme.typography.bodyMedium

)

}

}

}

}

}

}

10

Точка входа

// MainActivity.kt

class MainActivity : GsBaseActivity<AppNavigator>() {

@Composable

override fun ContentView(navigatorCtrl: NavigatorCtrl) {

GlobalSystemAppTheme {

navigator.setBaseMenu(

listOf(

DrawerItem("Пользователи") {

getSts().postCallState<UsersState>()

}

)

)

GsDrawerNavigatorViewV2(navigatorCtrl)

}

}

override fun provideNavigator() = AppNavigator()

override fun provideDatabase() = AppDatabase.getInstance(this)

override fun provideFirstState() = UsersState()

}

Итог

� Все SQL-операции, сеть и файлы уже работают внутри транзакций GsSession.

� UI-поток чист: ни одного launch(Dispatchers.IO) в пользовательском коде.

� Навигация описана в три строки (DrawerItem → postCallState).

� Расширение команды: новый экран — это ещё State + VCI + View, инфраструктуру трогать не
нужно.

Получился полноценный экран, который:

1. Умеет читать и писать в БД транзакционно.

2. Никогда не блокирует главный поток.

3. Восстанавливается после сбоев приложения (снимок стека сохраняет State Manager).

4. Готов к расширению: добавление сети, плагинов камеры, офлайн-синхронизации и т.д.

4 Состояние

State создаётся для представления и выполняет следующие функции:

� Хранит данные для контроллера представления

Примечание

UI-слой только подписывается на Observable-источники, не знает о SQL и транзакциях.

11

� Позволяет обращаться к контроллерам данных, использовать БД и сеть

� Запускает тяжёлые задачи

� Принимает решения о навигации

Внимание

Любые запросы к данным должны проходить через State, чтобы гарантировать сериализацию и
единый откат.

4.1 Минимальный скелет

class UsersState : SmStateAbst<UsersState>() {

/* ----------- Данные ----------- */

val usersRS = newRecordSet()

/* ----------- Контроллер ----------- */

override fun newVci(): SmStateVcp = UsersVci()

/* 1. Конструируем запросы и подписки */

override fun onInit() {

usersRS.onPopulate { q ->

q.query("SELECT * FROM Users ORDER BY sName")

}

}

/* 2. Первый вход в стек (UI ещё не создан) */

override fun afterEnter() {

dbs.getApi(UserApi::class).seed() // демо-данные

// выполняет onPopulate() каждый раз; если вызвать populate(), то считывание␣

→˓будет однократным

usersRS.refresh()

}

}

12

4.2 Жизненный цикл

Этап По-

ток

Назначение

onInit() Server Вызывается один раз после создания; регистрируем SQL-запросы и подписки
afterPush() Server Сразу после stateStack.push(); лёгкий хук, не запускать тяжёлые операции
onVisit() Server Даёт возможность выполнить сквозной переход до создания UI; вернуть

SmTrans или null

afterEnter() Server Каждый раз, когда State становится верхним; обновляем данные, запускаем
SharedTask

afterEnterGui()Main UI построен; точка синхронизации в VCI (scroll, диалоги, реакция на данные)
beforeExitGui()Main Пользователь покидает экран; сохраняем scroll, закрываем диалоги, забира-

ем изменённые поля
beforeExit() Server UI уже снят; транзакция ещё открыта — пишем изменения в БД, вызываем

flush() у RecordSet

onError(e) Server Ловим необработанные ошибки; можно вернуть альтернативный SmTrans

onClose() Server State окончательно удалён из стека; освобождаем ресурсы, отписываемся

4.3 Контейнеры данных

Список записей

Предоставляет удобные способы работы как из главного, так и из серверного потоков.

Для серверного потока:

� запрос данных из базы данных

Для главного потока:

� получение данных

� возможность безопасного редактирования с последующей передачей изменений в серверный по-
ток

val ordersRS = newRecordSet()

ordersRS.onPopulate {

it.query("SELECT * FROM Orders WHERE gidCustomer = ?", arrayOf(custGid))

}

ordersRS.onUpdateRecord { changes ->

val newQty = changes.getNewValueAsInt("nQuantity")

dbs.execSql(

"UPDATE Orders SET nQuantity = ? WHERE id = ?",

newQty,

changes.id

)

}

13

Единственная строка

Обёртка над списком записей для удобной работы с одной строкой.

val orderSR = newSingleRecord()

orderSR.onPopulate {

it.query("SELECT * FROM Orders WHERE gid = ?", arrayOf(orderGid))

}

Строка по значению

Декоратор над набором строк, позволяющий преобразовывать data-класс в строку и обратно.

val editMode = newRecordValue(EditFlags(isReadonly = false))

4.4 Исполнители

Используются для выделения конкретного потока в разрезе Activity для выполнения специализиро-
ванных задач.

val camExec = newCameraExecutorSubscription()

sm.doLaunch("resize") {

camExec.executor.submit {

val path = imageUtil.resize(raw)

postSharedTask("link photo") { st ->

dbs.getApi(FileApi::class).attach(orderGid, path)

}

}

}

Исполнитель запускается, когда StateManager активен, и гасится при onStop() Activity.

Внимание

Не забывайте вызывать close() у ExecutorSubscription, если держите его дольше жизни State.

4.5 Сквозной переход

Позволяет автоматически переходить на следующий экран без ожидания действий пользователя.

override fun onVisit(): SmTrans? =

if (dbs.getPkg<AuthPkg>().hasToken())

callStateTrans<HomeState>() // уже залогинен

else

callStateTrans<LoginState>() // требуется авторизация

14

4.6 Отмена длительных операций

InterruptingLock.validate() вызывается в потенциально длинных циклах.

Если пользователь нажал «Отмена»:

� выбрасывается CancelTaskException

� происходит rollback()

� UI возвращается к последнему стабильному экрану.

4.7 Хорошие практики

� Один экран — один State
Не склеивайте разные сущности.

� SQL/REST — только из State
VCI должен оставаться чистым.

� Методы State делайте идемпотентными
Пользователь может нажать кнопку дважды.

5 Навигатор

Класс, отвечающий за стандартное поведение пользовательского экрана:

� компоновка панелей и текущего представления

� перерисовка элементов

� блокировка экрана

� показ диалогов

� работа с меню и внутренней шиной событий

� и т.п.

Контроллер представления получает доступ к навигатору через свойство navigator.

Контроллер представления может изменить стандартное поведение, переопределив соответствующие
методы.
Перечень методов для переопределения определён в интерфейсе NavigableVcp.

Классы, реализующие навигатор:

� GsBottomNavigationBarView

� GsDrawerNavigationView

15

5.1 Пользовательский Navigator

Фреймворк поставляет базовую реализацию, но вы можете создать свою, реализовав интерфейс
Navigator и передав её в GsBaseActivity.provideNavigator().
Все контроллеры продолжат работать: интерфейс стабилен.

5.2 Отображение экрана

Экран отрисовывается на основе следующих элементов:

� Контроллер представления
Используется контроллер представления верхнего состояния в стеке состояний.

– View — разметка на основе библиотеки Compose

– NavigableVcp — инъекция зависимости в навигатор, которая может переопределить стан-
дартное поведение:

* состав меню

* видимость меню

* FAB

* наименование экрана

� TopBar

� BottomBar

� Drawer

Только в случае GsDrawerNavigationView

� диалоговые окна

� загрузочные окна

В стеке никогда не хранится более одного экрана для каждого SmState.
Повторный вызов State просто обновляет существующий элемент.

5.3 TopBar

Плашка вверху экрана, используется для:

� навигационной кнопки
Часто используется для кнопки вызова меню или кнопки «назад».

� наименования экрана

� кнопок действий

Для понимания принципов использования смотрите AppBar в Google Material Design.

Функции навигатора:

� hideTopAppBar()

� showTopAppBar()

� topGsMenuItems

16

5.4 BottomBar

Плашка внизу экрана, используется для:

� кнопок глобальной навигации

Для понимания принципов использования смотрите NavigationBar в Google Material Design.

Функции навигатора:

� hideBottomBar()

� showBottomBar()

� setBadgeFor(vciClassName, value)

В случае GsBottomNavigationBarView задаёт индикацию глобальным переходам.

5.5 Drawer

Выезжающая боковая панель, используется для глобальных переходов и действий.

5.6 Список глобальных переходов

Задаёт доступные переходы в состояния, которые пользователь может выполнить из
Drawer или BottomBar в зависимости от используемого навигатора.

Функции навигатора:

� setBaseMenu()

5.7 FAB

Плавающая кнопка, которая размещается поверх интерфейса и предназначена для выполнения глав-
ного действия на экране.

По умолчанию иконка + выключена. Переопределяется в NavigableVcp.

5.8 Блокировка и диалоги

Функции навигатора:

� lock("Sync...") — показывает полноэкранный индикатор и блокирует навигационные жесты

� unlock() — снимает блокировку
Это удобно для сетевых операций, которые важно завершить без выхода пользователя.

� createDialog(title, msg, ...) — упрощённый API для простых диалогов «OK/Cancel»
Данные хранятся в navigator.simpleDialog, Compose-слой реагирует автоматически.

17

5.9 Шина событий

Навигатор предоставляет компактную шину событий (на основе Flow Kotlin) между независимыми
контроллерами представлений без глобальных синглтонов.

Функции контроллера представления:

� subscribeEventBus

// подписка

vci.subscribeEventBus<MyPayload>("UpdateEvent") { payload ->

// реакция

}

� sendEventBus

// публикация

vci.sendEventBus("UpdateEvent", MyPayload(...)) { error ->

// обработка ошибок

}

Примечание

� За каждым именем события хранится SharedFlow.

� При закрытии экрана closeEventBus(name) автоматически отменяет подписку, предотвращая
утечки.

5.10 Индикатор синхронизации

Функции навигатора:

� setNeedSync(boolean)

Включает или выключает иконку «обновить» в TopBar.

� onClickSyncBtn

Передаёт обработчик в текущий VCI; типичная реализация — вызов postSharedTask для синхро-
низации с сервером.

5.11 Примечание

Пример расширения Navigator

Пример расширения для работы с NFC:

class MyNavigator :

NavigatorCtrl(),

NavigatorNfc {

override fun <T> onNfcRead(

data: String,

ss: SmStateSubject<out SmState>,

onRead: (String) -> Unit,

(продолжается на следующей странице)

18

(продолжение с предыдущей страницы)

onShow: (T) -> Unit

) {

// обработка NFC-данных

}

}

interface NavigatorNfc {

fun <T> onNfcRead(

data: String,

ss: SmStateSubject<out SmState>,

onRead: (String) -> Unit = {},

onShow: (T) -> Unit = {}

)

}

// MainActivity

navigator.onNfcRead<Map<String, String>>(it, getSts()) { data ->

nfcData = data

showNfcDialog.value = true

}

Пример MainActivity

class MainActivity : GsBaseActivity<AppNavigator>() {

@Composable

override fun ContentView(navigatorCtrl: NavigatorCtrl) {

AppTheme {

navigator.setBaseMenu(

listOf(

DrawerItem("Users") { getSts().postCallState<UsersState>() },

DrawerItem("Settings") { getSts().postCallState<SettingsState>() }

)

)

GsDrawerNavigatorView(navigatorCtrl)

}

}

override fun provideNavigator() = AppNavigator()

override fun provideDatabase() = AppDatabase.getInstance(this)

override fun provideFirstState() = UsersState()

}

Главная Activity предоставляет Navigator, базовое меню и первое состояние; дальше всё управление
переходит к StateManager и VCI-слою.

Навигационный слой GMF изолирует UI-логику от бизнес-кода: контроллеры формируют интеракции,
а Navigator обеспечивает плавные переходы, блокировки, меню и коммуникацию между экранами —
всё в нескольких вызовах без шаблонного кода.

19

6 Контроллер представления

VCI (View-Controller Interface) располагается между серверной логикой State и Jetpack Compose-
представлением.
Ключевые функции контроллера:

� обновление экрана

� управление доступными действиями пользователя

� управление визуальными компонентами

� хранение данных главного потока
Контроллер переживает пересоздание представления, например при повороте экрана.

� предоставление навигационных функций

Внимание

Весь код, связанный с UI-слоем, должен находиться именно в представлении,
а бизнес-данные остаются внутри соответствующего State.

6.1 Создание контроллера

Контроллер представления должен наследовать базовый класс SmStateVciAbst<S : SmState>.

Шаблон

class UsersVci : SmStateVciAbst<UsersState>() {

/* nullable RecordList, чтобы не использовать lateinit */

private var usersORL = nullObservableRecordList

override fun onInit(state: UsersState) {

usersORL = state.usersRS.observableRecordList

}

override fun afterEnter(state: UsersState) {

usersORL = state.usersRS.observableRecordList // подписываемся на изменения

}

override fun newScreen() = provideUsersView(this)

override fun getTitle() = "Пользователи"

}

20

6.2 Жизненный цикл

Фаза Описание

onInit(state)Вызывается один раз, когда VCI создан. Подписаться на RecordSet, настроить меню.
afterEnter(state)Каждый раз, когда State становится активным (после SmTrans или postSharedTask).

Обновить UI-данные, получить результат вычислений в стейте.
beforeExit(state)Перед уходом со страницы. Сохранить позицию списков, закрыть диалоги, отправить

накопленные изменения в стейт.

6.3 Общие свойства и методы

� navigator — Навигатор

� lazyListState — используется для хранения позиции основного списка представления

6.4 Работа с данными

Инициализация данных

Kotlin требует, чтобы все значения по возможности были инициализированы. Для удобства в контрол-
лере объявлены начальные значения:

� nullObservableRecordList

� nullObservableRecord

Подписка на набор строк

Compose-экраны не могут обращаться к БД и ресурсам серверного потока напрямую. Поэтому данные
обычно собираются в серверном потоке и сохраняются в состоянии. Для работы с данными, сохранён-
ными в состоянии, используется механизм привязки. Это позволяет безопасно использовать данные в
главном потоке, полученные из серверного потока.

Классы, публикующие данные для состояния:

� RecordSet

� SingleRecord

� RecordValue

Внутри себя они содержат:

� observableRecordList

� observableRecordHolder

Это позволяет использовать стандартные механизмы подписки Compose.

Привязка происходит в момент инициализации:

override fun onInit(state: UsersState) {

usersORL = state.usersRS.observableRecordList // подписались один раз

}

Пример использования привязанных данных:

21

@Composable

fun UsersView(vci: UsersVci, pv: PaddingValues) {

val users by vci.usersORL.observeAsState() // � живой список

LazyColumn(Modifier.padding(pv)) {

items(users) { or ->

Text(or.getValueAsString("name"))

}

}

}

Подписка происходит в главном потоке. Все изменения данных, пришедшие из серверного потока,
автоматически попадают в Compose.

Чтение и модификация значений

Каждый элемент списка — это RecordData.
Доступ к полям идёт через геттеры/сеттеры.

Пример чтения:

val email = or.getValueAsString("email")

val age = or.getValueAsInt ("age")

Пример изменения:

IconButton(onClick = { or.setValue("isSelected", 1) }) { /* ... */ }

Примечание

Синхронизация изменений между главным потоком и серверным потоком происходит в
beforeExit() VCI.
Когда пользователь завершит работу с экраном, мы можем сбросить изменения в БД одной пачкой.

6.5 Планирование серверных команд

Основные понятия:

� задачи — выполняются в контексте текущего State, не меняют стек состояний. Одновременно
может
быть запланировано несколько задач.

� переходы — добавляют или удаляют состояния из стека состояний.
Одновременно может быть запланирован только один переход.
Переход происходит транзакционно: SQLite-транзакция, FileManager и пользовательский экран
согласованно перейдут в новое состояние или, в случае ошибки, произойдёт откат до начала
выполнения перехода.

См. также

� StateEventProcessor

22

Для отправки действий в серверный поток используется планировщик getSts().

Методы getSts():

� postSharedTask:

withLock("Загрузка...") {

getSts<UsersState>().postSharedTask("refresh") { st ->

st.dbs.getApi(UserApi::class).updateFromServer()

}

.onSuccess {

// успешное завершение

// можем запланировать еще работу, переходы и т.д.

// например, getSts().postBack{}

}

.onFailure {

showBaseDialog("Ошибка", it.msg)

}

}

Совет

Используйте withLock, чтобы надёжно показать индикатор и гарантированно его убирать.

� postSharedTask()

Перед/после выполнения задачи происходит синхронизация данных между контроллерами.

� postAsyncTask()

Выполняет задачу без событий синхронизации.

� postCall()

Планирование перехода, при этом состояние добавляется в стек состояний; основной метод пере-
хода вперёд.

� postBack()

Планирование перехода назад (снятие состояния со стека); основной метод перехода назад.

� postCallWithResult()

Планирование перехода вперёд с ожиданием результата.

� postBackWithResult()

Планирование перехода назад (снятие состояния со стека) с результатом для ожидающего состо-
яния.

Внимание

Коллбеки onSuccess / onFailure приходят в главном потоке, блокировка UI не требуется.

Чтобы получить результат postCallWithResult, нужно вызвать зеркальный метод
postBackWithResult.
Если результат не будет передан при возвращении, произойдёт ошибка; сам результат обрабаты-
вается в параметре onResult.

При попытке вызвать postBackWithResult без ожидающего состояния также будет выброшена
ошибка.
Таким образом, разработчик всегда знает, когда что-то не пришло или было отправлено по ошибке.

23

Примеры для каждого варианта:

postSharedTask — задача с синхронизацией и обработкой результата

fun refreshUsers() {

showLoadingView()

getSts().postSharedTask("refreshUsers") { st ->

st.dbs.getApi(UserApi::class).updateFromServer()

}

.onSuccess {

}

.onFailure {

stopLoadingView()

showBaseDialog(

title = "Ошибка",

msg = it.message ?: "Не удалось обновить данные",

isError = true

)

}

}

postAsyncTask — без синхронизации

fun sendAnalyticsEvent(event: String) {

getSts().postAsyncTask("analyticsEvent") { st ->

st.dbs.execSql(

"INSERT INTO AnalyticsLog(event) VALUES(?)",

event

)

}

// без `afterEnter`

}

postCall / postCallState — переход на новый экран

// Переход на экран камеры без результата

fun toCamera() {

showLoadingView()

getSts().postCallState<GsCameraState> { tb ->

tb.onBefore { bb ->

bb.afterSubscribe { stTo ->

stTo.cameraUseCaseState = GsCameraUseCaseState.IMAGE_CAPTURE

}

}

}

}

24

postBack — возврат назад

override fun smPostBack() {

if (mediaPreviewState.value == MediaPreviewState.HIDDEN) {

getSts().postBack { /* можно настроить onBefore/onAfter, если нужно */ }

} else {

mediaPreviewState.value = MediaPreviewState.HIDDEN

showBottomBar()

}

}

postCallStateWithResult — переход с ожиданием результата

Пример: открываем камеру, ждём результат CameraResult, обрабатываем его в текущем VCI.

fun toQrScanner() {

showLoadingView()

getSts().postCallStateWithResult<GsCameraState, CameraResult>(

body = { tb ->

tb.onBefore { bb ->

bb.afterSubscribe { stTo ->

stTo.cameraUseCaseState = GsCameraUseCaseState.QRCODE_SCANNER

stTo.qrDelegate = this@CreateDemandVci

}

}

},

onResult = { result ->

stopLoadingView()

if (result is CameraResult.Qr) {

showBaseDialog(

title = "Информация",

msg = result.text

)

}

}

)

}

postBackWithResult — возврат назад с результатом

Экран-дочерний возвращает результат родителю:

fun backWithQr(qrCode: String) {

showLoadingView()

getSts().postBackWithResult(CameraResult.Qr(qrCode))

}

fun backErrorWithQr(e: Throwable) {

showLoadingView()

(продолжается на следующей странице)

25

(продолжение с предыдущей страницы)

getSts().postBackWithResult(CameraResult.Error(e))

}

Композиция бизнес-логики

� Используйте getSts только из VCI.
Это позволит:

– избежать ошибок доступа к данным из разных потоков;

– повысить читаемость кода.

@Composable

fun Toolbar(vci: UsersVci) {

IconButton(onClick = { vci.refreshUsers() }) { /* ... */ }

}

// в VCI

fun refreshUsers() {

showLoadingView()

getSts().postSharedTask("refresh") { st ->

st.dbs.getApi(UserApi::class).syncFromServer()

}.onSuccess {

usersORL.refresh() // обновляем список

stopLoadingView()

}.onFailure {

showBaseDialog(

"Ошибка",

it.message ?: "Не удалось обновить данные",

isError = true

)

}

}

6.6 Меню

Список пунктов меню задаётся в событии afterEnter:

override fun afterEnter(state: UsersState) {

topGsMenuItems.setOf(

GsMenuItem("Обновить") { refresh() },

GsMenuItem("Выход") { navigator.doLogout() }

)

bottomGsMenuItems.single("Добавить") { addUser() }

}

26

6.7 События навигации

� onBack — обработчик кнопки «Назад».

6.8 Расширение навигатора

Методы расширения навигатора объявлены в интерфейсе NavigableVcp и могут быть реализованы в
контроллере представления.

Можно переопределить:

� newScreen — представление типа VcpScreen

� getTitle — заголовок

� topGsMenuItems — элементы TopBar

� bottomGsMenuItems — элементы BottomBar

� showFAB — видимость FAB

� Fab — собственная реализация @Composable Fab()

� fabClick — действия на FAB

Пример FAB

override fun showFAB() = usersORL.size > 0

override fun Fab() =

SmallFloatingActionButton(onClick = ::addUser) {

Icon(Icons.Default.PersonAdd, contentDescription = null)

}

6.9 Стандартные диалоги

showBaseDialog(

title = "Удалить пользователя?",

okText = "Да",

dismissText = "Нет",

onOk = ::confirmDelete

)

6.10 Event Bus

Flow-шина событий работает на всё приложение:

subscribeEventBus<SyncDone>("SyncDone") {

navigator.setNeedSync(false)

}

27

6.11 VcpScreen

Класс-адаптер, который отдаёт Composable-дерево как функцию Content(pv: PaddingValues).
Именно screen попадает в Navigator для реального рендеринга во вкладку стека.
PaddingValues определяет размеры отступов для меню.

6.12 Стандартные делегаты

Делегаты типизируют стандартные события для обработки сообщений.

Стандартные делегаты:

� QrCodeScannerDelegate

Внимание

Экспериментальный функционал, находится в разработке.

6.13 Полный пример

class DemandListVci : SmStateVciAbst<DemandListState>() {

private var demandORL = nullObservableRecordList

val isRefreshing = mutableStateOf(false)

/* 1. Init one time */

override fun onInit(state: DemandListState) {

demandORL = state.demandRS.observableRecordList

onBack { smVci -> smVci.smPostBack() }

}

/* 2. Every enter */

override fun afterEnter(state: DemandListState) {

demandORL = state.demandRS.observableRecordList

}

/* 3. Exit */

override fun beforeExit(state: DemandListState) = Unit

/* 4. UI */

override fun newScreen() = provideDemandListView(this)

override fun getTitle() = "Заявки"

/* 5. Actions */

fun refresh() {

showLoadingView()

getSts<DemandListState>().postSharedTask("refresh") { st ->

st.dbs.getApi(EamDemandApi::class).syncFromServer()

}.onSuccess {

stopLoadingView()

}.onFailure {

(продолжается на следующей странице)

28

(продолжение с предыдущей страницы)

stopLoadingView()

showBaseDialog("Ошибка", it.message ?: "")

}

}

}

6.14 Хорошие практики

� Не держите ссылок на RecordData, всегда получайте новую через observeAsState().
Каждый раз там будет актуальная строка.

� Вызывайте только публичные методы VCI.
Не трогайте dbs из Composable.

� Из VCI в State переходите через postSharedTask()/postAsyncTask().
Никогда не ходите в State напрямую.

� Держите бизнес-логику в State.

� Держите сетевые/SQL-операции — в Api/Pkg.

� Помните: VCI — это тонкий контроллер UI.
Он должен оставаться ответственным за подписки, показ, навигацию и т.д.
Изоляция VCI позволяет делать код простым, тестируемым и устойчивым к изменениям.

� Используйте собственные ExecutorSubscription для Bluetooth, камеры, видео и т.д. вместо
postAsyncTask.
Это снизит нагрузку на серверный поток.

6.15 Плохие практики

� Не злоупотребляйте методом refreshView().
Этот метод уже вызывается навигатором, ручной вызов нужен только в особых случаях.

7 Сессия

7.1 Транзакционный контекст

GsSession — компонент, отвечающий за транзакционную обработку данных. Содержит:

� контекст транзакции:

– кэш, который закрепляет одну объект-строку на весь жизненный цикл транзакции;

– список изменений
При завершении транзакции изменения собираются в пачки insert / update / delete, ко-
торые сбрасываются в БД по 500 записей;

– методы (begin / commit / rollback);

– транзакционный кэш (rowCache);

– списки изменений;

� Room-базу данных (RoomDatabase);

29

� методы для работы с сессией базы данных:

– нативные запросы (query*);

� файловую подсистему (FileManager);

� инъекции зависимостей для контроллеров сессии (Api и Pkg).

Любой код, работающий с данными за пределами представления, стоит располагать в контроллерах
сессии.
Это позволяет гарантировать целостность транзакций и отсутствие гонок.

7.2 Инъекция зависимостей

Контроллеры сессий создаются с автоматической инициализацией необходимых ссылок (инъекцией
зависимостей).
Для управления используются следующие аннотации:

� @GsApiBean, @GsPkgBean, @GsBean — генерируют расширения вида GsSession.getUserApi() и
фабрику GlobalFactory,
избавляя разработчика от ручного Dagger/Hilt и позволяя создавать компоненты по имени без
дополнительного кода.

Примечание

Изменение одного класса приводит лишь к перегенерации связанного файла, сборка проекта оста-
ётся быстрой.

См. также

� модуль di-processor

7.3 Контроллеры сессий

Контроллер сессии создаётся один раз на сессию.

Api

Используется для организации бизнес-логики в разрезе сущности базы данных.
Содержит методы работы со строками таблицы:

� создание
При этом автоматически генерируется идентификатор записи;

� удаление;

� обновление;

� загрузка;

� кэширование.

30

DbPkg

Используется для организации общей транзакционной бизнес-логики.

Выдача пакетов

val userApi = session.getApi(UserApi::class) // способ без генерации

val userApi = session.getUserApi() // способ с генерацией

� При первом запросе объект создаётся, вызывается enterSession(), дальше он возвращается из
кэша.

� recreateApi() удаляет старый экземпляр и тут же создаёт новый — удобно после logout.

7.4 Потоковая модель

Контроллеры сессий являются потоконебезопасными объектами, рассчитанными на работу в серверном
потоке.

Внимание

Не пытайтесь обращаться к контроллерам сессии из главного потока.

7.5 Работа с транзакцией

� flush() — собирает изменения из всех Api и применяет их пачками по 500 строк.

� commit() — сохраняет изменения.

� rollback() — откатывает изменения и очищает кэш.

Работа с сырыми запросами

� querySingleMap

val map = session.querySingleMap(

"SELECT * FROM User WHERE gid = ?",

arrayOf(gid)

)

� querySingleData

// map → data-class

data class MiniUser(val name: String, val age: Int?)

val mu: MiniUser? = session.querySingleData(

MiniUser::class,

"SELECT sName AS name, nAge AS age FROM User WHERE id = ?",

arrayOf("57")

)

31

8 Хранение данных

8.1 Реляционные данные

Для хранения реляционных данных используется СУБД SQLite и ORM Room.

Для подключения базы данных необходимо:

1. Подключить зависимости в Gradle.

2. Создать класс базы данных.

3. Зарегистрировать базу данных в MainActivity.
В случае, если MainActivity унаследована от GsBaseActivity, добавьте в класс:

override fun provideDatabase(): PrototypeDatabase =

RoomDbSingleton.getInstance(this, "PrototypeDatabase")

Класс базы данных

// db/AppDatabase.kt

@Database(

entities = [SystemEntity::class, User::class],

version = 1,

exportSchema = false

)

abstract class AppDatabase : RoomDatabase() {

abstract val userDao: UserDao

companion object {

@Volatile private var INSTANCE: AppDatabase? = null

fun getInstance(ctx: Context): AppDatabase =

INSTANCE ?: synchronized(this) {

INSTANCE ?: Room.databaseBuilder(

ctx,

AppDatabase::class.java,

"AppDB"

).build().also { INSTANCE = it }

}

}

}

32

8.2 Файлы

Файлы сохраняются в каталоге приложения согласно настройке DbConfig.dataPath.

Для работы с файлами используется FileManager в GsSession.
Он позволяет организовать транзакционную работу с файлами.

Принципы работы:

� любые загруженные/созданные файлы сначала пишутся во временную область;

� при commit() — перемещаются в постоянную область;

� при rollback() — удаляются.

Таким образом БД и файлы остаются синхронными.

Работа с файлами

val localPath = takePhoto() // /cache/...

val draft = dbs.fileManager.copyToSendDir(localPath)

gate.upload(draft) // сервер принял → HTTP 200

dbs.commit() // файл переносится в /data/

Если сеть упала — вызов rollback() удалит файл из черновиков и откатит БД.

9 Контроллер таблицы

Контроллер таблицы (Api) служит для транзакционной работы со строками базы данных.

Api-контроллер предоставляет:

� кэш строк :

– один объект Entity — одна строка;

– повторный load(id) вернёт тот же экземпляр;

� список изменений — изменения накапливаются до момента flush();

� flush() — все изменения (inserted / updated / deleted) собираются в GsSession.flush() и
пишутся пачками;

� счётчик идентификаторов — insert() получает уникальный id из счётчика.

Для создания контроллера:

1. Создайте базу данных.

2. Создайте сущность.

3. Создайте Dao.

4. Создайте Api-контроллер.

5. Скомпилируйте проект.
При компиляции проекта произойдёт генерация необходимых классов.

33

9.1 Сущность

Сущность описывает таблицу базы данных в терминах ORM.
Для сущности генерируется Dao, а также создаётся таблица в базе данных.

Для создания сущности:

1. Создайте data class.

2. Унаследуйте класс от BaseEntity.

Совет

Не создавайте поле id, так как оно определено в BaseEntity.

3. Добавьте аннотацию @Entity.

4. Укажите в аннотации имя таблицы базы данных.

Внимание

Имя таблицы должно соответствовать имени класса.

5. Добавьте класс в список entities базы данных.

Пример:

@Database(

entities = [SystemEntity::class, User::class]

)

abstract class AppDatabase : RoomDatabase()

Пример сущности:

// db/User.kt

@Entity(tableName = "User")

data class User(

var sName: String? = null,

var nAge : Int? = null

) : BaseEntity() {

override fun copyEntity() = copy()

}

34

9.2 Dao

Dao содержит набор сгенерированных на основе сущности методов для реализации ORM.

1. Создайте абстрактный класс.

2. Унаследуйте его от BaseDao.
В качестве типа укажите сущность для этого Dao.

3. Аннотируйте класс аннотацией @Dao.

4. Добавьте переменную с Dao в класс базы данных.

Пример:

abstract class AppDatabase : RoomDatabase() {

abstract val userDao: UserDao

}

Пример Dao:

// db/UserDao.kt

@Dao

abstract class UserDao : BaseDao<User>()

9.3 Создание Api

1. Создайте класс.
Класс должен принимать параметр ctx: ApiBeanContext. Контекст нужен для работы механиз-
ма инъекции зависимостей.

2. Унаследуйте класс от DbBaseApiGen.
DbBaseApiGen автоматически подставляет dbRoom и dbSession через DI-процессор.

@GsApiBean

class UserApi(ctx: ApiBeanContext)

: DbBaseApiGen<User, UserDao, AppDatabase>(ctx) {

override val dao get() = dbRoom.userDao

override fun newEntity() = User()

fun seedDemo() {

// инициализация демо-данных

}

}

35

9.4 Создание Api на основе рефлексии

1. Создайте класс.

2. Унаследуйте класс от DbBaseApi.

Внимание

Раздел находится в разработке.

9.5 Оптимизация производительности

� Делайте insertAll(list) через Api — это всегда batch без forEach.

� Используйте rowCache для реконфигурируемых фильтров:
запросили 500 id, фильтруете в Kotlin-коде, не дёргая SQL повторно.

10 Кодогенерация

Кодогенерация позволяет автоматизировать рутинные операции.

10.1 DI-процессор

Автоматизирует работу с инъекциями зависимостей в GsSession.

Отвечает за генерацию:

� Session-extensions

Файл ${Cls}SessionGen.kt добавляет три метода к GsSession:
getCls(), destroyCls(), recreateCls().

� GlobalFactory.kt

Для всех @GsBean создаётся объект-фабрика с thread-safe ConcurrentHashMap.
Позволяет получить, пересоздать или обнулить singleton без DI-контейнера.

� MainStorage.kt

Минимальное потокобезопасное хранилище для глобальных бинов.

Примечание

При необходимости можно добавить произвольный DI-фреймворк, например Dagger / Hilt.

36

Ключевые аннотации

Анно-

тация

Применяется к классу-бину Жизненный цикл Как вызывается

@GsPkgBeanPackage-класс, работающий
внутри GsSession

Создаётся и кеширует-
ся на время сессии

session.get<ИмяPkg>() (сге-
нерированный extension)

@GsApiBeanAPI-класс поверх Room То же, что и
@GsPkgBean

session.get<ИмяApi>()

@GsBean Глобальный компонент (пар-
сер, crypto-утилита и др.)

Singleton всего процес-
са

GlobalFactory.get<Имя>()

Пример

@GsApiBean

class UserApi(ctx: ApiBeanContext)

: DbBaseApiGen<User, UserDao, AppDb>(ctx) { /* ... */ }

@GsPkgBean

class SyncPkg(ctx: PkgBeanContext) : DbPkg2(ctx)

@GsBean

class CryptoUtil // не зависит от сессии

// Работаем в State или другом серверном коде

val api = session.getUserApi() // сгенерировано

val pkg = session.getSyncPkg()

val crypto = GlobalFactory.getCryptoUtil()

Подключение к проекту DI

plugins {

id("com.google.devtools.ksp") version "1.9.22-1.0.17"

}

dependencies {

ksp(project(":di-processor"))

}

37

Правила создания

� Конструктор аннотированного класса должен принимать ровно один аргумент-контекст
(ApiBeanContext или PkgBeanContext).

� Для singleton с побочным состоянием необходимо использовать @GsBean и управлять жизненным
циклом вручную через GlobalFactory.

Диагностика ошибок

Сгенерированный код лежит в $buildDir/generated/ksp/.../di/.
При любой проблеме (цикличность, нарушение областей) KSP прерывает компиляцию и выводит по-
нятное сообщение вида:
Cycle detected: a.b.C -> x.y.D -> a.b.C.

Исправьте зависимости — Gradle пересоберётся без перезапуска IDE.

10.2 Room-процессор

Отвечает за генерацию:

� базы данных;

� Dao.

Подключение к проекту Room

dependencies {

ksp(libs.androidx.room.compiler)

}

10.3 Результат кодогенерации

Получается один JAR < 1 МБ, не требующий рефлексии и не трогающий рантайм,
что позволяет легко обфусцировать код.

11 Плагин активити

Activity Plugin — это автономный модуль, который встраивается прямо в GsBaseActivity, добавляя
ей новую функцию (NFC-сканер, BLE-монитор, WebRTC-звонки и т.п.) без изменений в бизнес-логике
экранов и без пересборки ядра GMF.

К плагинам активити можно получать доступ из главного потока.

Базовые плагины (камера, NFC, QR-сканер) включены «из коробки» и будут пополняться; разработчик
может добавить собственный, реализовав тот же интерфейс.

38

11.1 Мотивация

� Изолировать платформенные API: весь код работы с NFC, камерой или сенсорами живёт в пла-
гине, а приложение общается только через колбэк-интерфейсы.

� Повторно использовать логику: один плагин можно подключить сразу во многие приложения.

� Синхронизировать жизненный цикл: плагин получает те же события (onCreate/Resume/
Pause...), что и Activity, и не нарушает транзакции State Manager’а.

11.2 Контракт

interface ActivityPlugin : IPkg {

/* 1. Инициализация */

/** Один раз до показа UI. Можно выполнять работу в IO-диспетчере. */

suspend fun initializeAsync(activity: GsBaseActivity<*>) {}

/** Вызывается сразу после инициализации UI. */

fun onInitializeUi(activity: GsBaseActivity<*>, navigator: Navigator) {}

/* 2. Жизненный цикл */

fun onCreate (activity: GsBaseActivity<*>) {}

fun onStart (activity: GsBaseActivity<*>) {}

fun onResume (activity: GsBaseActivity<*>) {}

fun onPause (activity: GsBaseActivity<*>) {}

fun onStop (activity: GsBaseActivity<*>) {}

fun onDestroy(activity: GsBaseActivity<*>) {}

/** Activity получила новый Intent (например, NFC-метку). */

fun onNewIntent(activity: GsBaseActivity<*>, intent: Intent) {}

}

11.3 Подключение плагина в Activity

class MainActivity : GsBaseActivity<AppNavigator>() {

override fun provideModules(): List<KClass<out ActivityPlugin>> =

listOf(MyAnalyticsPlugin::class)

}

� Тип-список — передаёте KClass; экземпляр будет лениво создан через session.getSimplePkg().
Так удобнее, если плагин в разных модулях и нужен DI-контейнер.

39

11.4 Порядок инициализации

1. GsBaseActivity собирает StateManager и Navigator.

2. Вызывает plugin.initializeAsync() параллельно с инициализацией StateManager’а; здесь
выполняются тяжёлые операции (запуск CameraX, чтение лицензий и т.п.).

3. UI создан — onInitializeUi() даёт плагину объект Navigator.

4. Далее события onCreate/Start/Resume... приходят в том же порядке, что и в Activity.

11.5 Обмен данными с экраном

� Плагин хранит публичные MutableStateFlow / Callback-свойства — ViewModel или VCI подпи-
сывается и получает данные.

� Если нужно уведомить только текущий экран, проще всего передать лямбду-делегат при вызове
(в afterEnter), как показано в NFC-примере, либо получить плагин через сессию.

11.6 Работа с Navigator

В onInitializeUi() плагин может:

� показать диалог через navigator.createDialog(...);

� запустить экран через navigator.setBaseMenu() или вставить SmTrans в текущий стек.

Главное — не обращаться к UI до этой фазы: до создания Navigator компоновка ещё не готова.

11.7 Пример NFC-плагина

class NfcActivityPlugin : ActivityPlugin {

private val isWriteNow = AtomicBoolean(false)

private var adapter: NfcAdapter? = null

var onRead: (String) -> Unit = {}

override suspend fun initializeAsync(activity: GsBaseActivity<*>) {

adapter = activity.getSystemService(NfcManager::class.java).defaultAdapter

setupForegroundDispatch(activity)

}

override fun onResume(activity: GsBaseActivity<*>) {

adapter?.enableForegroundDispatch(activity, pendingIntent, filters, null)

}

override fun onPause(activity: GsBaseActivity<*>) {

adapter?.disableForegroundDispatch(activity)

}

override fun onNewIntent(activity: GsBaseActivity<*>, intent: Intent) {

if (!isWriteNow.get()) {

val payload = readNdef(intent)

onRead(payload)

(продолжается на следующей странице)

40

(продолжение с предыдущей страницы)

}

}

/* остальной код — чтение, запись, шифрование */

}

� Плагин полностью управляет NfcAdapter, не нагружая Activity.

� В onRead передаёт данные обратно в экран (VCI) или State.

Activity-плагины позволяют подключать новые аппаратные возможности так же легко, как dependency
в Gradle. Всё управление происходит в одном месте, жизненный цикл синхронизирован, а бизнес-код
экранов остаётся чистым.

12 Дополнительные контроллеры

12.1 Pkg

Используется для организации бизнес-логики, не требующей прямого доступа к сессии.

Интерфейс Роль

GsSession Контракт; доступен везде через DI или StateManager.
GsSessionImpl Единственная реализация; создаётся внутри StateManager.
IApi / IDbPkg Сессионные singletons; живут до закрытия текущей сессии.
IPkg Пакеты без доступа к БД; кэшируются отдельно от сессионных компонентов.

Внимание

Экспериментальный функционал, находится в разработке.

13 Приложение A

13.1 Ключевые усложнения нативного SDK

� Несогласованные фоновые операции
REST-запрос стартовал в IO, запись в SQLite — в Default, обратное уведомление пришло в
mainThread. Малейшая задержка вызывала гонку и слепой интерфейс.

� Сложная транзакционность
Часть данных уже записана в БД, часть файлов загрузилась, а сеть оборвалась. Вручную отка-
тить всё — отдельная задача со своими багами.

� Boilerplate
Room → Repository → UseCase → ViewModel → LiveData → Compose. Каждая сущность дуб-
лирует набор полей — правка трёх строк превращалась в десять правок и pull-request на 200
строк.

41

� Непредсказуемый офлайн
За очередь задач отвечали отдельные сервисы, и как только бизнес-логика усложнялась, синхро-
низация также усложнялась и появлялись трудноуловимые баги.

� Трудная интеграция железа
Камера, NFC, голосовой ввод требовали кастомных сервисов, контекстных разрешений и много-
словного DI-кода.

Детальное описание преодолённых усложнений

Усложнение Решение, предоставляемое GlobalErp Mobile Framework

Последовательное выполнение
долгих операций блокирует UI

Вся логика БД, сетевые вызовы и файловые операции выпол-
няются в едином серверном потоке. Поток UI занят только от-
рисовкой.

Race condition между результата-
ми запросов

Подписка осуществляется на ObservableRecord; события до-
ставляются строго в порядке фиксации транзакции.

Разрозненные реализации retry-
логики для REST, файлов и ло-
кальной БД

Pkg, Api, FileManager работают внутри той же транзакции
GsSession. commit / rollback выполняются единообразно.

Сложность атомарного отката:
часть данных уже записана, часть
— нет

GsSession объединяет БД, файлы, сеть и любые пакеты, со-
зданные пользователем: единая транзакция обеспечивает со-
гласованный откат.

Отмена длительной операции
оставляет систему в непредсказу-
емом состоянии

InterruptingLock прерывает SQL, REST и вычисления; стек
состояний автоматически откатывается к стабильному экрану.

Навигация разбросана между
Activity, флагами back stack и
коллбэками

Стек-ориентированная навигация (SmState + SmTrans) управ-
ляется на серверном потоке.

Решения о переходах принимают-
ся до синхронизации с UI.
Передача данных между слоя-
ми требует множества Mapper /
Repository / ViewModel

Цепочка SQL → RecordSet → Compose избавляет от промежу-
точных слоёв. Данные приходят в UI напрямую.

Хрупкий офлайн-режим, необхо-
димость писать очередь синхрони-
зации

Все изменения фиксируются локально; синхронизация с серве-
ром оформляется единообразно через очереди задач и Flow, без
разрозненных сервисов.

Сложная интеграция аппаратных
функций (камера, NFC, QR-
сканер)

Плагины ActivityPlugin подключаются в GsBaseActivity.
Дополнительных DI-конфигураций не требуется.

Несогласованная обработка аппа-
ратной кнопки «Назад» и жестов

Navigator централизованно управляет TopBar, BottomBar, FAB
и back-навигацией для всех экранов.

Невозможность гарантировать по-
рядок выполнения фоновых задач
при навигации

Задачи (postSharedTask, postAsyncTask) регистрируются в
очереди событий State Manager. Выполняются строго после за-
вершения предыдущих транзакций.

Отсутствие единых правил для те-
стирования

State / VCI можно запускать с параметром database = null;
достаточно

42

	Пролог
	Введение
	Ключевые возможности
	Архитектура
	Взаимодействие слоев
	Основные понятия
	Отдельный серверный поток
	Адаптированный MVVM-паттерн
	Жизненный цикл экранов

	Дополнительные понятия

	Тестирование и масштабирование

	Быстрый старт
	Шаблон проекта
	Зависимости в Gradle
	Скелет каталогов
	ORM-классы
	Room-база
	DI-процессор
	Бизнес-логика экрана
	Контроллер главного потока
	Пользовательский интерфейс
	Точка входа
	Итог

	Состояние
	Минимальный скелет
	Жизненный цикл
	Контейнеры данных
	Список записей
	Единственная строка
	Строка по значению

	Исполнители
	Сквозной переход
	Отмена длительных операций
	Хорошие практики

	Навигатор
	Пользовательский Navigator
	Отображение экрана
	TopBar
	BottomBar
	Drawer
	Список глобальных переходов
	FAB
	Блокировка и диалоги
	Шина событий
	Индикатор синхронизации
	Примечание
	Пример расширения Navigator
	Пример MainActivity

	Контроллер представления
	Создание контроллера
	Шаблон

	Жизненный цикл
	Общие свойства и методы
	Работа с данными
	Инициализация данных
	Подписка на набор строк
	Чтение и модификация значений

	Планирование серверных команд
	Примеры для каждого варианта:
	postSharedTask — задача с синхронизацией и обработкой результата
	postAsyncTask — без синхронизации
	postCall / postCallState — переход на новый экран
	postBack — возврат назад
	postCallStateWithResult — переход с ожиданием результата
	postBackWithResult — возврат назад с результатом

	Композиция бизнес-логики

	Меню
	События навигации
	Расширение навигатора
	Пример FAB

	Стандартные диалоги
	Event Bus
	VcpScreen
	Стандартные делегаты
	Полный пример
	Хорошие практики
	Плохие практики

	Сессия
	Транзакционный контекст
	Инъекция зависимостей
	Контроллеры сессий
	Api
	DbPkg
	Выдача пакетов

	Потоковая модель
	Работа с транзакцией
	Работа с сырыми запросами

	Хранение данных
	Реляционные данные
	Класс базы данных

	Файлы
	Работа с файлами

	Контроллер таблицы
	Сущность
	Dao
	Создание Api
	Создание Api на основе рефлексии
	Оптимизация производительности

	Кодогенерация
	DI-процессор
	Ключевые аннотации
	Пример
	Подключение к проекту DI
	Правила создания
	Диагностика ошибок

	Room-процессор
	Подключение к проекту Room

	Результат кодогенерации

	Плагин активити
	Мотивация
	Контракт
	Подключение плагина в Activity
	Порядок инициализации
	Обмен данными с экраном
	Работа с Navigator
	Пример NFC-плагина

	Дополнительные контроллеры
	Pkg

	Приложение A
	Ключевые усложнения нативного SDK
	Детальное описание преодолённых усложнений

