
GsfCli
Выпуск 1.0.5

февр. 03, 2026

Содержание

1 Обзор 2

1.1 Назначение . 2
1.2 Требования . 3
1.3 Установка . 4
1.4 Добавление проекта в рабочее пространство . 5
1.5 Работа с активным проектом . 6
1.6 Обновление активного проекта . 6
1.7 Конфигурирование сервера приложения . 6
1.8 Изменения настроек проекта . 6
1.9 Изменения глобальных настроек . 6
1.10 Хранения паролей . 6
1.11 Горячие клавиши . 7

2 Настройки 7

2.1 Настройки окружения . 7
2.2 Настройки проекта . 8

3 Ярлыки 9

3.1 activate_project.cmd . 9
3.2 active_project_configure_idea.cmd . 9
3.3 active_project_refresh.cmd . 9
3.4 active_project_sbt.cmd . 9
3.5 active_project_start_idea.cmd . 9
3.6 start_sep_idea.cmd . 10
3.7 add_project.cmd . 10
3.8 delete_project.cmd . 10

4 Настройка GitLab CI для сборки проектов gsf-cli 10

4.1 1. Настройка gitlab-runner . 10
4.2 2. Установка и настройка GSF-CLI на хосте сборки . 12
4.3 3. Конфигурация пайплайна . 15

5 Настройка Jenkins агента 15

5.1 1. Создание рабочей директории . 15
5.2 2. Установка Java 17 . 15
5.3 3. Настройка узла Jenkins . 16
5.4 4. Расширенные настройки . 16

1

5.5 5. Запуск агента . 16

6 Среда сборки проекта 16

6.1 1. Сборка с использованием публичных репозиториев . 16
6.2 2. Сборка с использованием внутреннего прокси-репозитория 17
6.3 3. Сборка в закрытой среде (изолированной) . 17

7 Конфигуратор проектов 19

7.1 Commands: . 19

8 Менеджер проектов 21

8.1 Commands: . 22

9 Менеджер учетных данных 27

9.1 Commands: . 28

10 Утилита для git 29

10.1 Commands: . 30

11 Реестр используемых библиотек 34

11.1 Сохранение набора используемых библиотек . 35
11.2 Сравнение набора внешних зависимостей . 35

12 Логирование в проекте 35

12.1 Общий обзор . 35
12.2 Структура логирования . 35
12.3 Пример структуры каталога логов . 36

13 Конфигурационные файлы проекта 36

13.1 Пример содержимого config.json . 36

1 Обзор

1.1 Назначение

Командная утилита предназначена для автоматизации работы разработчика.

Gsf-cli позволяет:

� Подготовить прикладной проект к работе

� Обновить зависимости необходимые для работы проекта

2

1.2 Требования

Для работы утилиты требуется

� python начиная с версии 3.9

� sbt начиная с версии 1.8.2

� git

�

Необходимые библиотеки:

Прописаны в requirements.txt:

� bcrypt==4.0.1

� certifi==2023.7.22

� cffi==1.15.1

� charset-normalizer==3.2.0

� cryptography==41.0.3

� debugpy

� decorator==5.1.1

� fabric==3.1.0

� idna==3.4

� invoke==2.2.0

� Jinja2==3.1.2

� MarkupSafe==2.1.3

� paramiko==3.3.1

� prompt-toolkit==3.0.39

� psutil==5.9.5

� pycparser==2.21

� PyNaCl==1.5.0

� PyYAML==6.0.1

� requests==2.31.0

� ruamel.yaml==0.17.32

� ruamel.yaml.clib==0.2.7

� tqdm==4.65.0

� urllib3==2.0.4

� wcwidth==0.2.6

3

Доп пакет:

� python3-venv

1.3 Установка

1. Скачайте дистрибутив gsf-cli

curl https://repo.global-system.ru/artifactory/common/ru/bitec/gsf-cli-windows/

→˓SNAPSHOT/gsf-cli-windows-SNAPSHOT.zip --output gsf-cli.zip

Для ручного обновления утилиты можно в каталоге с:\programs\ сделать cmd файл следующего
содержания (пути подправить по необходимости)

curl https://repo.global-system.ru/artifactory/common/ru/bitec/gsf-cli-windows/

→˓SNAPSHOT/gsf-cli-windows-SNAPSHOT.zip --output gsf-cli.zip

"C:\Program Files\7-Zip\7z.exe" x gsf-cli.zip -aoa -ogsf-cli

pause

2. Распакуйте архив
Рекомендуемый путь для установки: C:\programs\gsf-cli

3. Установите jdk
Установленные jdk будут искаться по адресу C:\Program Files\Java

4. Установите Intellij Idea
Установленные среды будут искаться по адресу C:\Program Files\JetBrains

Внимание

В IDEA должен быть установлен плагин Scala. Подробности корректной установки смотрите
в
руководстве прикладного разработчика GlobalERP Framework.

5. Установите sbt версии 1.8.2 или выше

Внимание

Sbt должен быть установлен по адресу c:\programs\sbt\.

6. При необходимости установите SVN клиент
Для авто поиска пути доступа к svn.exe должен быть добавлен в системную переменную PATH.
Установщик TortoiseSVN может делать это автоматически.

7. При необходимости установите GIT клиент

4

https://www.scala-sbt.org/download.html

1.4 Добавление проекта в рабочее пространство

Внимание

Если перед началом работы открыта среда разработки в общем окружении ее необходимо закрыть.

Для добавления проекта запустите скрипт gsf-cli\links\add_project.cmd и следуйте инструкциям
мастера.
Мастер запросит необходимые параметры, и проведет подготовку проекта к работе.

Внимание

Внимательно читайте запросы мастера.

Внимание

При возникновении ошибки загрузки модулей из GitLab fatal: Unencrypted HTTP is not supported
for GitHub. Ensure the repository remote URL is using HTTPS. следует выполнить команду git

config --global credential.extgit.global-system.ru.provider generic и повторить добавле-
ние проекта.

Результат выполнения всех шагов мастера:

� gsf-cli\workspace\dists\{project_name}\Global3se\

Актуальный дистрибутив сервера приложения

� gsf-cli\workspace\sources\{project_name}\application\

Полностью готовый к работе проект с исходным кодом

� gsf-cli\workspace\links\{project_name}\

Ярлыки быстрого запуска

� Добавленный проект становится активным

Источник проекта

Мастер конфигурации запрашивает источник определяющий откуда будет получен исходный код про-
екта. Формат источников:

� SVN

https://{path}/application

� GIT

https://{path}.git

� LXC

lxc://{host}

LXC является контейнером в котором собирается проект в системе CI

5

1.5 Работа с активным проектом

Активный проект - это проект, который будет использоваться по умолчанию в случае если он не указан
явно.
Регулярные команды по работе с активным проектом смотрите в gsf-cli\links\

1.6 Обновление активного проекта

Для обновления зависимостей активного проекта запустите gsf-cli\links\active_project_refresh.
cmd

1.7 Конфигурирование сервера приложения

Сервер приложения конфигурируется автоматически, для этого используется профиль конфигурации.
Пример: http://svn.bitec.ru/svn/depot/ASSource/database/pgtest/application/project/deploy/dev-win

1.8 Изменения настроек проекта

� Удалите проект командой gsf-cli\links\delete_project.cmd

При вопросе об удалении файлов ответьте нет, что бы не выкачивать данные повторно.

� Добавьте проект с тем же именем и новыми параметрами.

Примечание

Данный подход имеет смысл только в случае если не меняется источник проекта, не считая SSL.
Это позволяет избежать повторной выгрузки и компиляции проекта.

1.9 Изменения глобальных настроек

Для изменения глобальных cli запустите в консоли команду gsf-cli\config.cmd configure

1.10 Хранения паролей

Пароли сохраняются в зашифрованном виде по мастер ключу.
Мастер ключ создается автоматически при первом добавлении проекта.
Мастер добавления проекта запрашивает необходимые для дальнейшей работы пароли. Для изменения
паролей смотри раздел credential_manager.

6

http://svn.bitec.ru/svn/depot/ASSource/database/pgtest/application/project/deploy/dev-win

1.11 Горячие клавиши

� вверх, вниз
Используется для выбора разных вариантов.

� вправо

Используется для автоматического завершения команд.

2 Настройки

2.1 Настройки окружения

Путь к мастер ключу

Мастер ключ генерируется при первом запуске проекта, и используется для шифрования настроек
проекта. Мастер ключ должен находится в безопасном месте и быть не доступным для других поль-
зователей. По умолчанию мастер ключ сохраняется в рабочем каталоге пользователя.

Путь к IntelliJ IDEA

Используется для запуска среды разработки.

Путь к svn

Используется для работы с SVN.

Путь к sbt

Используется для работы с SBT.

Примечание

Sbt начиная с версии 1.8 для работы в режиме BSP требует отсутствие пробелов в пути. В связи с
этим на данный момент требуется устанавливать sbt по адресу: C:\programs\sbt

Начало диапазона динамических портов

Используется для динамического выделения портов, при добавлении проекта с нестандартными пор-
тами. Позволяет одновременно запускать несколько серверов приложений.

7

2.2 Настройки проекта

В данной главе описываются параметры которые может спрашивать мастер, для корректного конфи-
гурирования проектов.

Jdk

JDK с которым будет работать проект.

Url к проекту

Исходный код проекта в SVN/GIT.

Пример: http://svn.bitec.ru/svn/depot/ASSource/database/pgtest/application

Или: https://extgit.global-system.ru/appdev/internal/pgtest.git

Url к серверу приложения

Место откуда брать обновления для сервера приложения.

Пример: ftp://ftp.bitec.ru/pub/#Global/Global3/release/Postgres/artifacts/globalserver.

zip

Или: https://repo.global-system.ru/artifactory/general/ru/bitec/globalserver/

globalserver/1.24.0/nightly/master/postgres/globalserver.zip

Использовать стандартные порты

Если флаг сброшен, то при конфигурировании правила запуска сервера приложения порты будут
динамически выделены из диапазона.

Примечание

Номера портов распечатываются при добавлении проекта. Так же их можно посмотреть в
workspace\sources\{project_name}\application\.idea\runConfigurations\Global3se.xml

Внимание

По умолчанию это: 8080

8

Флаг сборки релиза

По умолчанию сброшен. Если флаг установлен сборка проекта идет в режиме релиза. Что означает что
сборка запустится один раз на версию. Повторные запуски будут игнорироваться. Повторная публика-
ция артефактов релиза запрещена. Для смены параметра смотри: manage.py set_is_publish_release

[-h]

3 Ярлыки

Ярлыки используются для быстрого запуска часто используемых команд. Скрипты для ярлыков на-
ходятся по адресу: gsf-cli\links

3.1 activate_project.cmd

Активировать проект. При запуске скрипта откроется мастер, позволяющий выбрать проект для ак-
тивации.

3.2 active_project_configure_idea.cmd

Сконфигурировать idea для активного проекта.

3.3 active_project_refresh.cmd

Обновить зависимости для активного проекта.

3.4 active_project_sbt.cmd

Запустить консоль SBT для активного проекта.

3.5 active_project_start_idea.cmd

Запустить среду разработки в общем окружении для активного проекта.

Внимание

Внимание, в один момент времени может быть запущена только одна среда разработки в общем
окружении.

9

3.6 start_sep_idea.cmd

Запустить среду разработки в отдельном окружении. Это позволяет запускать несколько сред разра-
ботки одновременно. При запуске скрипта, мастер запросит проект для запуска. Рабочее окружение
для работы idea сохраняется по адресу: gsf-cli\workspace\idea\{project_name}

3.7 add_project.cmd

Добавить проект. При этом откроется консоль с мастером для добавления проекта.

3.8 delete_project.cmd

Удалить проект. При этом откроется консоль с мастером для выбора и удаления проекта.

4 Настройка GitLab CI для сборки проектов gsf-cli

Инструкция по настройке CI процесса для автоматической сборки applib.

4.1 1. Настройка gitlab-runner

Инструкция применима к хосту сборки с debian like системой.

1.1 Настройка раннера в GitLab проекте

1. Перейдите в нужный проект.

2. Откройте меню: Settings → CI/CD.

3. Разверните секцию Runners.

4. Нажмите «New project runner».

5. Укажите:

� Tag — метка, по которой будет запускаться раннер.

� Runner description — описание раннера.

6. Отключите опцию Run untagged jobs.

После нажатия вы перейдёте на страницу справки по регистрации gitlab-runner.

Выберите нужную операционную систему и сохраните предложенную команду регистрации.

10

1.2. Установка GitLab Runner

На хосте сборки выполните следующие команды:

Скачивание бинарного файла GitLab Runner

sudo curl -L --output /usr/local/bin/gitlab-runner https://gitlab-runner-downloads.s3.

→˓amazonaws.com/latest/binaries/gitlab-runner-linux-amd64

Выдача прав на исполнение

sudo chmod +x /usr/local/bin/gitlab-runner

Создание системного пользователя

sudo useradd --comment 'GitLab Runner' --create-home gitlab-runner --shell /bin/bash

Установка раннера как systemd-сервиса

sudo gitlab-runner install --user=gitlab-runner --working-directory=/home/gitlab-runner

Запуск сервиса

sudo gitlab-runner start

1.3. Регистрация раннера

Выполните команду регистрации, полученную на этапе Настройка раннера в GitLab проекте:

Пример:

sudo gitlab-runner register --url http://gitlablocal --token glrt-t3_m2-zeUzFHMysT3QDwmsT

Данная команда выдаст диалоговое окно, в котором:

� Укажите имя раннера (можно оставить по умолчанию).

� Выберите тип исполнителя: shell.

� Убедитесь, что вы используете тот же tag, что был указан на этапе Настройка раннера в GitLab

проекте.

После регистрации раннер будет запускаться автоматически при старте системы и будет готов к вы-
полнению пайплайнов.

1.4. Проверка

Для проверки работоспособности раннера, создайте минимальный .gitlab-ci.yml (Укажите коррект-
ный тэг раннера):

test-job:

tags:

- <your-runner-tag>

script:

- echo "Runner работает!"

11

Возможные проблемы

Если при запуске пайплайна, он выдает такую ошибку:

Тогда требуется:

� в файле /home/gitlab-runner/.bash_logout закомментировать строки:

if ["$SHLVL" = 1]; then

[-x /usr/bin/clear_console] && /usr/bin/clear_console -q

fi

� перезапустить сервис gitlab-runner

sudo systemctl restart gitlab-runner.service

4.2 2. Установка и настройка GSF-CLI на хосте сборки

Программное обеспечение, которое потребуется для сборки

� Java 21

� Sbt 1.10.7

� Утилита gsf-cli

2.1. Установка требуемых пакетов

sudo apt update && sudo apt install -y sudo wget git mc zip unzip

2.2. Подготовка директорий

Создайте рабочие каталоги:

sudo mkdir -p /opt/global/tmp

sudo mkdir -p /opt/global/builds

2.3. Загрузка необходимых компонентов

GSF CLI

sudo wget -P /opt/global/tmp https://repo.global-system.ru/artifactory/common/ru/bitec/

→˓gsf-cli-linux/SNAPSHOT/gsf-cli-linux-SNAPSHOT.zip

sbt

sudo wget -P /opt/global/tmp https://github.com/sbt/sbt/releases/download/v1.10.7/sbt-1.

→˓10.7.zip

(продолжается на следующей странице)

12

https://github.com/bell-sw/Liberica/releases/download/21.0.6%2B10/bellsoft-jdk21.0.6+10-linux-amd64-full.deb
https://github.com/sbt/sbt/releases/download/v1.10.7/sbt-1.10.7.zip
https://repo.global-system.ru/artifactory/common/ru/bitec/gsf-cli-linux/SNAPSHOT/gsf-cli-linux-SNAPSHOT.zip

(продолжение с предыдущей страницы)

JDK 21 от BellSoft

sudo wget -P /opt/global/tmp https://github.com/bell-sw/Liberica/releases/download/21.0.6

→˓%2B10/bellsoft-jdk21.0.6+10-linux-amd64-full.deb

2.4. Установка и распаковка компонентов

Установка JDK

sudo apt install /opt/global/tmp/bellsoft-jdk21.0.6+10-linux-amd64-full.deb

Распаковка SBT

sudo unzip /opt/global/tmp/sbt-1.10.7.zip -d /opt/global

Распаковка GSF CLI

sudo unzip /opt/global/tmp/gsf-cli-linux-SNAPSHOT.zip -d /opt/global/gsf-cli

2.5. Установка GSF CLI

sudo /opt/global/gsf-cli/bin/installpkg.sh

sudo /opt/global/gsf-cli/bin/initvenv.sh

2.6. Настройка сборочного проекта

Конфигурационный файл

Создайте конфигурационный файл:

sudo nano /opt/global/builds/config.json

cо следующим содержимым (укажите корректный project_branch и project_source)

� project_source — url на конфигурационный проект

� project_branch — ветка конфигурационного проекта

{

"sbt_home": "/opt/global/sbt",

"svn_path": "",

"projects": [

{

"project_branch": "test",

"jdk_home": "/usr/lib/jvm/bellsoft-java21-amd64/",

"name": "main",

"project_source": "https://extgit.global-system.ru/pgtest.git",

"project_source_type": "vcs",

(продолжается на следующей странице)

13

(продолжение с предыдущей страницы)

"publish_type": "SNAPSHOT",

"vcs_type": "git"

}

]

}

Детальное описание файла можно посмотреть тут

Регистрация приватного ключа

sudo /opt/global/gsf-cli/config.sh register_private_key -c /opt/global

Установка необходимых учётных данных

sudo /opt/global/gsf-cli/credential_manager.sh set -u <url> -l <login> -p <password>

Указывайте учетные данные для необходимых репозиториев, указанных в файле default.yaml из кон-
фигурационного проекта.

Пример:

Если у вас закрытая среда, то ознакомьтесь с документацией

2.7. Активация headless-режима

Включаем headless режим, для отключение диалога с пользователем в процессе сборки.

sudo /opt/global/gsf-cli/config.sh enable_headless

2.8. Загрузка конфигурации

Команда для загрузки конфигурации из config.json.

sudo /opt/global/gsf-cli/config.sh load_config -f /opt/global/builds/config.json

14

2.9. Смена владельца директории

Сделайте владельцем директории с gsf-cli, пользователя, который был создан в шаге Установка

GitLab Runner, в данном примере это gitlab-runner

sudo chown gitlab-runner:gitlab-runner /opt/global -R

4.3 3. Конфигурация пайплайна

Создайте файл .gitlab-ci.yml в корне проекта.

Минимальная конфигурация .gitlab-ci.yml для сборки проекта:

stages:

- build

ssh_execute:

stage: build

tags:

- <runner_tag>

script:

- |

/opt/global/gsf-cli/manage.sh --all build

После выполнения данного пайплайна в папке /opt/global/gsf-cli/workspace/sources/

<project_name>/application/build/publish/applib будет собранное прикладное решение.

5 Настройка Jenkins агента

5.1 1. Создание рабочей директории

Создайте папку /opt/JenkinsSlave и назначьте её владельцем пользователя, под которым Jenkins
будет подключаться к агенту:

sudo mkdir /opt/JenkinsSlave

sudo chown qaz:qaz /opt/JenkinsSlave -R

5.2 2. Установка Java 17

� Обновите индексы пакетов и установите OpenJDK 17:

sudo apt update

sudo apt install openjdk-17-jdk -y

15

5.3 3. Настройка узла Jenkins

� Перейдите в интерфейс Jenkins и создайте новый агент (узел).

� Введите имя агента (узла) и выберите тип «Постоянный агент»

После нажатия кнопки «Создать» вы попадете в окно настройки вашего агента (узла)

Обратите внимание на следующие параметры:

� Удалённая корневая директория: /opt/JenkinsSlave

� Использование: «Собирать только проекты с метками, совпадающими с этим узлом»

� Способ запуска: Launch agents via SSH

� Credentials: Укажите существующие или создайте новые учетные данные

5.4 4. Расширенные настройки

В разделе «Advanced. . . » укажите следующие параметры при необходимости:

� Порт: Укажите нестандартный порт SSH, если используется не 22

� JavaPath: Если установлено несколько версий Java, укажите путь до нужной версии:

/usr/lib/jvm/java-17-openjdk-amd64/bin/java

5.5 5. Запуск агента

Сохраните настройки и откройте только что созданный агент. Нажмите кнопку Launch agent.

После успешного запуска агент будет готов к использованию.

6 Среда сборки проекта

Для сборки проекта требуется доступ к ряду репозиториев с дополнительными зависимостями (к при-
меру, общие библиотеки java). Есть несколько вариантов организации работы с репозиториями.

6.1 1. Сборка с использованием публичных репозиториев

� Все зависимости скачиваются из публичных репозиториев (например, Maven Central), располо-
женных непосредственно в интернете.

16

6.2 2. Сборка с использованием внутреннего прокси-репозитория

� Используется промежуточный репозиторий-прокси.

� Все зависимости запрашиваются у прокси-репозитория.

� Если зависимость не найдена — прокси делает запрос к внешним репозиториям, скачивает нужное
и кэширует у себя.

Подробнее можно посмотреть в официальной документации sbt

6.3 3. Сборка в закрытой среде (изолированной)

� Среда полностью изолирована от интернета.

� Используется локальный репозиторий.

� Все зависимости предварительно вручную загружены во внутренний репозиторий.

Настройка сборки в закрытой среде.

Шаг 1. Создать файл с конфигурацией репозитория

Создайте файл ~/.sbt/repositories:

mkdir -p ~/.sbt

nano ~/.sbt/repositories

Содержимое файла:

[repositories]

local

maven-proxy: https://repo.global-system.ru/artifactory/common/, allowInsecureProtocol

repositories - секция, где указываются все доступные repositories для sbt. local - локальный
репозиторий кэша. Используется для зависимостей, установленных вручную или собранных локально.
maven-proxy: https://repo.global-system.ru/artifactory/common/, allowInsecureProtocol

� maven-proxy — это имя репозитория (можно любое).

� https://repo.global-system.ru/artifactory/common/ — URL репозитория.

� allowInsecureProtocol — флаг, позволяющий использовать небезопасный протокол HTTP вме-
сто HTTPS (или с невалидным SSL-сертификатом). Начиная с версий 1.4+ sbt запрещает ис-
пользовать HTTP. Этот флаг нужен если:

– используется локальный репозиторий по HTTP, без SSL;

– используется самоподписанный **SSL-сертификат **, и sbt считает его небезопасным.

Подробнее можно посмотреть в официальной документации sbt

Примечание

17

https://www.scala-sbt.org/1.x/docs/Proxy-Repositories.html
https://www.scala-sbt.org/1.x/docs/Proxy-Repositories.html#sbt+Configuration

Файл `.sbt/repositories` - это конфигурация самого sbt-ланчера (загрузчика). Он нужен␣

→˓sbt, чтобы понимать, откуда скачивать зависимости (библиотеки, плагины и т.д.), до␣

→˓того как проект начнёт собираться.

Для сборки самого приложения необходимые файлы берутся из репозиториев указанных в␣

→˓файле - `[project_name]/project/repositories/default.yaml`:

repositories:

- name: maven-common url: "https://repo.global-system.ru/artifactory/common"

- name: global-general url: "https://repo.global-system.ru/artifactory/general"

- name: app-global url: "https://repo.global-system.ru/artifactory/build-kit" isBase:␣

→˓true isLoginRequired: true

Можно включить изоляцию репозиториев При добавлении опции -Dsbt.override.build.

repos=true в файле проекта application/.sbtopts sbt будет обращаться только к репозиториям,
указанным в .sbt/repositories

Шаг 2. Добавить файл с учётными данными (если нужен доступ по логину/паролю)

Создайте файл:

mkdir -p ~/.ivy2

nano ~/.ivy2/.credentials

Содержимое:

realm=Artifactory Realm

host=repo.global-system.ru

user=build-user

password=very-secret-password

Добавьте в систему переменную окружения

export SBT_CREDENTIALS="$HOME/.ivy2/.credentials" с корректным путем до файла .credentials

Шаг 3. Добавление сертификатов. В большинстве случаев в закрытой среде потребуется настро-
ить Java-сертификаты

1. Получите корневой сертификат

2. Выполните команду:

sudo keytool -import -trustcacerts \

-keystore $JAVA_HOME/lib/security/cacerts \

-storepass changeit \

-alias company-ca \

-file /путь/к/company-ca.crt

� $JAVA_HOME — путь к установленной JDK (например, /usr/lib/jvm/bellsoft-java21-amd64)

18

� -alias — уникальное имя сертификата в хранилище (например, company-ca)

� -storepass changeit — пароль по умолчанию для cacerts (если не меняли)

� -trustcacerts — указывает, что вы добавляете доверенный CA-сертификат

3. Проверка добавления:

keytool -list -keystore $JAVA_HOME/lib/security/cacerts -storepass changeit | grep␣

→˓company-ca

7 Конфигуратор проектов

Для запуска используйте gsf-cli\config.cmd. Который используется для расширенного конфигури-
рования утилиты, в случае если не хватает ярлыков.

7.1 Commands:

usage: config.py [-h] cmd ...

positional arguments:

cmd Команды

full_help Распечатать справку

configure Обновить конфигурацию

load_config Загрузить конфигурацию

add_project добавить проект

delete_project Удалить проект

activate_project

Активировать проект

enable_headless

Включить автономный режим

disable_headless

Выключить автономный режим

options:

-h, --help show this help message and exit

Full_help

usage: config.py full_help [-h]

options:

-h, --help show this help message and exit

19

Configure

usage: config.py configure [-h]

options:

-h, --help show this help message and exit

Register_private_key

usage: config.py register_private_key [-c]

options:

-h, --help show this help message and exit

-f Путь к файлу приватного ключа

Load_config

usage: config.py load_config [-h] [-f F]

Загружает конфигурацию из файла.

Конфигурация проекта содержит json файл с атрибутами:

sbt_home - местоположение sbt, если не задан sbt ищется из переменной окружения path

svn_path - местоположение svn, если не задано svn ищется из переменной окружения path

projects - массив проектов.

Атрибуты проекта:

name - имя проекта

project_source - источник проекта

jdk_home - адрес локации jdk

server_source - источник сервера приложения, игнорируется если сборка проекта идет от␣

→˓комплекта сборки

options:

-h, --help show this help message and exit

-f F файл конфигурации

Add_project

usage: config.py add_project [-h]

Добавляет проект, конфигурация задается мастером создания проекта

options:

-h, --help show this help message and exit

20

Delete_project

usage: config.py delete_project [-h]

Мастер удаления проекта из конфигурации

options:

-h, --help show this help message and exit

Activate_project

usage: config.py activate_project [-h]

options:

-h, --help show this help message and exit

Enable_headless

usage: config.py enable_headless [-h]

А автономном режиме запрещено взаимодействие с пользователем.

В случае необходимости запроса пользователя будет выброшено исключение

options:

-h, --help show this help message and exit

Disable_headless

usage: config.py disable_headless [-h]

А интерактивном режиме возможно взаимодействие с пользователем

options:

-h, --help show this help message and exit

8 Менеджер проектов

Для запуска используйте gsf-cli\manage.cmd. Используется для расширенного управления проектами
в случае если не хватает ярлыков.

21

8.1 Commands:

usage: manage.py [-h] [-p P] [--all] cmd ...

positional arguments:

cmd Команды

full_help Распечатать справку

prepare_project Подготовить проект к работе

refresh_server Обновить сервер приложения

refresh_sbt_plugin Обновить sbt-плагин

refresh_source Обновить исходный код

refresh Обновить зависимости

init_project Инициализировать проект проекта

configure_idea Настроить idea

set_is_publish_release

Установить признак публикации релиза

publish_build_kit Публикация комплекта сборки

create_build_kit_release

Выпускает релиз комплекта сборки

git_branch_build_kit

Создаёт ветку для патча комплекта сборки

refresh_links Обновить ярлыки

publish Опубликовать

publish_sbt_plugin Опубликовать sbt plugin

build Собрать проект

test Запустить юнит тесты

clean Очистить

update_module_dependency

Обновление зависимостей модулей

save_external_dependencies

Сохраняет набор всех внешних зависимостей решения в

файл

diff_external_dependencies

Сравнивает набор внешних зависимостей из файла с

текущими от проекта

options:

-h, --help show this help message and exit

-p P Имя проекта

--all Выполнить действие для всех проектов

22

Full_help

usage: manage.py full_help [-h]

options:

-h, --help show this help message and exit

Prepare_project

usage: manage.py prepare_project [-h]

Подготавливает проект к работе, загружает сервер приложения, исходный кода, а так же␣

→˓конфигурирует idea

options:

-h, --help show this help message and exit

Refresh_server

usage: manage.py refresh_server [-h]

Обновляет сервер приложение

options:

-h, --help show this help message and exit

Refresh_source

usage: manage.py refresh_source [-h]

Обновляет исходный код проекта, при необходимости делает checkout проекта

options:

-h, --help show this help message and exit

Refresh

usage: manage.py refresh [-h]

Обновляет зависимости

options:

-h, --help show this help message and exit

23

Init_project

usage: manage.py init_project [-h]

Инициализация проекта, создание необходимых файлов перед запуском idea

options:

-h, --help show this help message and exit

Configure_idea

usage: manage.py configure_idea [-h]

Конфигурация idea.

При этом происходит:

Создание конфигурации для запуска сервера приложения;

Настройка для проектов системы контроля версий.

Смотри Intellij Idea: Settings > Version Control > Directory mappings

options:

-h, --help show this help message and exit

Set_is_publish_release

usage: manage.py set_is_publish_release [-h]

Вызывает мастера установки признака публикации релиза.

В случае если признак установлен публикация происходит по версии

заданной в конфигурации проекта.

options:

-h, --help show this help message and exit

Publish_build_kit

usage: manage.py publish_build_kit [-h] [-pt {release,snapshot}]

Публикация комплекта сборки.

Версия берётся из конфигурации проекта.

options:

-h, --help show this help message and exit

-pt {release,snapshot}, --publish_type {release,snapshot}

Тип публикации комплекта сборки. Если не указан, то

значение возьмётся из конфига.

24

Create_build_kit_release

usage: manage.py create_build_kit_release [-h]

[-rt {generation,major,minor,build,patch}]

Выпускает релиз комплекта сборки.

Обрабатывается версии для корректного отображения в тегах

- Увеличивается выбранная версия и билд

- Происходит создание тега по текущей версии комплекта сборки

- Происходит commit и push изменений и тега

- Нельзя создать релиз от патча, если выбранная версия не является патчем

options:

-h, --help show this help message and exit

-rt {generation,major,minor,build,patch}, --release_type {generation,major,minor,build,

→˓patch}

Версия релиза комплекта сборки

Git_branch_build_kit

usage: manage.py git_branch_build_kit [-h]

Создаёт ветку для патча комплекта сборки.

При этом:

- Создаётся новая ветка, если её нет

- Локальная ревизия устанавливается в ветку с патчем

- Ошибка, если в project.yaml есть незакомиченные изменения

options:

-h, --help show this help message and exit

Refresh_links

usage: manage.py refresh_links [-h]

Обновляет ярлыки

options:

-h, --help show this help message and exit

25

Publish

usage: manage.py publish [-h]

Опубликовать комплект сборки

options:

-h, --help show this help message and exit

Publish_sbt_plugin

usage: manage.py publish_sbt_plugin [-h]

Опубликовать sbt plugin из комплекта сборки

options:

-h, --help show this help message and exit

Build

usage: manage.py build [-h]

Выполняет обновление сервера, плагина, компиляцию и публикацию

options:

-h, --help show this help message and exit

Test

usage: manage.py test [-h]

Выполняет юнит тестирование

options:

-h, --help show this help message and exit

Clean

usage: manage.py clean [-h]

Очистить

options:

-h, --help show this help message and exit

26

Update_module_dependency

usage: manage.py update_module_dependency [-h] [--force]

Обновление зависимостей модулей.

Команда актуализирует версии модулей в `project.yaml` в соответствии с требованиями в␣

→˓`module-info.xml` для текущего модуля.

Проверка начинается с первого модуля в `project.yaml`.

При изменении версии какого либо модуля от которого зависит текущий модуль, происходит␣

→˓повторная проверка зависимостей измененного модуля.

При нахождении расхождений в модуле подключенному по исходному коду меняется `project.

→˓yaml`.

В случае если зависимость идет от комплекта сборки, выдается предупреждение.

options:

-h, --help show this help message and exit

--force Актуализирует 'project.yaml' не спрашивая пользователя

Save_external_dependencies

usage: manage.py save_external_dependencies [-h] [-f [FILE]]

options:

-h, --help show this help message and exit

-f [FILE], --file [FILE]

Файл, в который необходимо сохранить список

Diff_external_dependencies

usage: manage.py diff_external_dependencies [-h] [-f [FILE]]

options:

-h, --help show this help message and exit

-f [FILE], --file [FILE]

Файл для сравнения, в котором хранится список внешних

зависимостей

9 Менеджер учетных данных

Для запуска используйте gsf-cli\credential_manager.cmd. Используется для управления паролями
для доступа к репозиторию

27

9.1 Commands:

usage: credential_manager.py [-h] cmd ...

positional arguments:

cmd Команды

full_help

Распечатать справку

get Загрузить конфигурацию

show Отобразить учетные данные

git git credential-helper

set Задать учетные данные по протоколу

options:

-h, --help show this help message and exit

Full_help

usage: credential_manager.py full_help [-h]

options:

-h, --help show this help message and exit

Get

usage: credential_manager.py get [-h] [-u U]

Получает учетные данные для заданного url.

Учетные данные предоставляются в поток вывода в формате json

options:

-h, --help show this help message and exit

-u U url для которого надо получить учетные данные

Show

usage: credential_manager.py show [-h]

Отображает сохраненные учетные данные

options:

-h, --help show this help message and exit

28

Git

usage: credential_manager.py git [-h] command

Реализует credential-helper для git

positional arguments:

command

options:

-h, --help show this help message and exit

Set

usage: credential_manager.py set [-h] [-u U] [-l L] [-p P]

Задает учетные данные для заданного url, поиск будет идти по началу строки.

options:

-h, --help show this help message and exit

-u U Url для которого надо задать учетные данные

-l L Имя пользователя

-p P Пароль

10 Утилита для git

Используется для автоматизации выпуска релизов и переключения между ветками в проекте решения.

Для запуска используйте gsf-cli\gsf_git.cmd.

Совет

Для удобной работы из консоли решения используйте алиас gsfp_git.cmd.

Консоль решения можно открыть ярлыком workspace/links/[project_name]/start_shell.cmd

Алгоритм выпуска релизов:

1. Откройте консоль решения для выпуска релиза

2. Выпустите релиз модуля
В каталоге модуля выполните gsfp_git create_release

3. Откройте консоль решения для релиза

Совет

Для переключение решения в релизную ветку в каталоге решения выполните gsfp_git switch

release

29

4. Переключите релиз
Для этого в каталоге модуля выполните gsfp_git switch [release_name]

5. Сделайте commit и push для проекта решения

10.1 Commands:

usage: gsf_git.py [-h] [-p P] [-w W] [-m M] [-s] [--all_modules] cmd ...

positional arguments:

cmd Команды

full_help Распечатать справку

refresh Обновить исходный код решения из git репозитория

create_generation Выпустить поколение

create_major Выпустить мажорную версию

create_minor Выпустить минорную версию

create_build Выпустить билд

create_patch_branch

Создаёт ветку для патча

create_patch Выпустить патч

switch Переключится на другую ветку

update_to_last_tag

Актуализирует модули до последних версий тегов

switch_to_last_tag

Переключает модули на последних версий тегов

status Отобразить статус

version_info Отобразить информацию по версиям

options:

-h, --help show this help message and exit

-p P Имя проекта

-w W Рабочий каталог

-m M Имя модуля

-s Решение

--all_modules Все модули

Full_help

usage: gsf_git.py full_help [-h]

options:

-h, --help show this help message and exit

30

Refresh

usage: gsf_git.py refresh [-h]

Обновляет исходный код решения и модулей git

options:

-h, --help show this help message and exit

Create_generation

usage: gsf_git.py create_generation [-h] [-m M [M ...]]

Выпускает поколение.

При этом:

- Обрабатывается версии для корректного отображения в тегах

- Увеличивается текущее поколение и билд версии модулей

- Происходит создание тегов по текущим версиям модулей

- Происходит commit и push изменений и тегов

- Нельзя создать поколение от патча

options:

-h, --help show this help message and exit

-m M [M ...] Список модулей для обновления

Create_major

usage: gsf_git.py create_major [-h] [-m M [M ...]]

Выпускает мажорную версию.

При этом:

- Обрабатывается версии для корректного отображения в тегах

- Увеличиваются текущие мажорная и билд версии модулей

- Минорная и релизная версия зануляются

- Происходит создание тегов по текущим версиям модулей

- Происходит commit и push изменений и тегов

- Нельзя создать мажорную версию от патча

options:

-h, --help show this help message and exit

-m M [M ...] Список модулей для обновления

31

Create_minor

usage: gsf_git.py create_minor [-h] [-m M [M ...]]

Выпускает минорную версию.

При этом:

- Обрабатывается версии для корректного отображения в тегах

- Увеличиваются текущие минорная и билд версии модулей

- Релизная версия зануляется

- Происходит создание тегов по текущим версиям модулей

- Происходит commit и push изменений и тегов

- Нельзя создать минорную версию от патча

options:

-h, --help show this help message and exit

-m M [M ...] Список модулей для обновления

Create_build

usage: gsf_git.py create_build [-h] [-m M [M ...]]

Выпускает билд.

При этом:

- Обрабатывается версии для корректного отображения в теге

- Увеличивается текущие билд версии модулей

- Происходит создание тегов по текущим версиям модулей

- Происходит commit и push изменений и тегов

- Нельзя создать билд от патча

options:

-h, --help show this help message and exit

-m M [M ...] Список модулей для обновления

Create_patch_branch

usage: gsf_git.py create_patch_branch [-h] [-m M]

Создаёт ветку для патча.

При этом:

- Создаётся новая ветка, если её нет

- Локальная ревизия устанавливается в ветку с патчем

- Ошибка, если есть незакоммиченные изменения

- Ошибка, если команда вызвана сразу на несколько модулей

options:

-h, --help show this help message and exit

-m M Модуль по которому создаётся ветка с патчем

32

Create_patch

usage: gsf_git.py create_patch [-h] [-m M [M ...]]

Выпускает патч.

При этом:

- Обрабатывается версия для корректного отображения в теге

- Увеличивается текущая версия модуля по патчу

- Происходит создание тегов по текущим версиям модулей

options:

-h, --help show this help message and exit

-m M [M ...] Список модулей для обновления

Switch

usage: gsf_git.py switch [-h] (-branch BRANCH | -mb MB [MB ...])

Переключает репозиторий на другую ветку.

При запуске от решения:

- Изменяется ветка в настройках проекта

- Происходит обновление репозиториев

При запуски от модуля:

- Изменяется ветка в файле `project.yaml`

Внимание: Данные изменения не попадают в commit

- Происходит обновление исходного кода по модулю

options:

-h, --help show this help message and exit

-branch BRANCH

-mb MB [MB ...] <module_name>:<branch_name>

Update_to_last_tag

usage: gsf_git.py update_to_last_tag [-h] [-m M [M ...]]

Актуализирует модули до последних версий тегов.

Модули, в которых указана ветка, а не тег - игнорируются.

При этом:

- Изменяется ветка в файле `project.yaml`

Внимание: Данные изменения не попадают в commit

- Происходит обновление исходного кода по модулю

options:

-h, --help show this help message and exit

-m M [M ...] Список модулей для обновления

33

Switch_to_last_tag

usage: gsf_git.py switch_to_last_tag [-h] [-m M [M ...]]

Переключает модули на последние версии тегов.

При этом:

- Изменяется ветка в файле `project.yaml`

Внимание: Данные изменения не попадают в commit

- Происходит обновление исходного кода по модулю

options:

-h, --help show this help message and exit

-m M [M ...] Список модулей для обновления

Status

usage: gsf_git.py status [-h]

Отображает информацию о состоянии решения и модулей.

Позволяет увидеть список модулей по которым необходимо сделать commit или push.

Решение в списке обозначено символом `.`

options:

-h, --help show this help message and exit

Version_info

usage: gsf_git.py version_info [-h]

Отображает информацию по версиям решения и модулей.

Решение обозначается символом `.`

options:

-h, --help show this help message and exit

11 Реестр используемых библиотек

Реестр используемых библиотек - это набор всех внешних зависимостей решения. Формат набора биб-
лиотек: <Вендор>:<Наименование>:<Версия>

34

11.1 Сохранение набора используемых библиотек

Что бы сохранить набор используемых библиотек, необходимо запустить батник .../gsf-cli/

workspace/links/<project>/save_external_dependencies.cmd и указать файл, куда необходимо со-
хранить данные.

Внимание

Перед вызовом батника необходимо убедиться, что выполнен reload sbt.

11.2 Сравнение набора внешних зависимостей

Что бы сравнить набор внешних зависимостей текущего решения с набором из файла, необходимо запу-
стить батник .../gsf-cli/workspace/links/<project>/diff_external_dependencies.cmd и указать
файл, в котором находятся внешние зависимости.

В результате работы команды будет выведено два списка:

� «Новый зависимости» - зависимости, которые есть в решении, но отсутствуют в файле.

� «Устаревшие зависимости» - зависимости, которых нет в решении, но присутствуют в файле.

Если зависимости не отличаются, то будет выведено Внешние зависимости идентичны.

Внимание

Перед вызовом батника необходимо убедиться, что выполнен reload sbt.

12 Логирование в проекте

12.1 Общий обзор

В проекте реализована система логирования, позволяющая фиксировать ошибки и события, возникаю-
щие в процессе выполнения команд. Логирование выполняется в автоматическом режиме и не требует
дополнительной настройки со стороны пользователя.

12.2 Структура логирования

Логи в проекте сохраняются в директории workspace/logs, которая создается автоматически при
первом запуске команды. Логирование организовано следующим образом:

� Логи командной строки – если во время выполнения команды в терминале возникает ошибка,
она автоматически перехватывается и записывается в файл cmd_error_log.txt.

� Общие логи проекта – записываются в файлы, названные в соответствии с текущей датой
(YYYY-MM-DD.log).

� Хранение логов – файлы логов сохраняются за последние 10 дней, более старые файлы авто-
матически удаляются.

35

12.3 Пример структуры каталога логов

project_root/

workspace/

logs/

cmd_error_log.txt

2025-03-01.log

2025-03-02.log

...

2025-03-10.log

13 Конфигурационные файлы проекта

13.1 Пример содержимого config.json

{

"sbt_home": "/opt/global/sbt",

"svn_path": "",

"concurrent_module_updates": 1,

"projects": [

{

"project_branch": "<branch>",

"jdk_home": "/usr/lib/jvm/bellsoft-java21-full-amd64/",

"name": "<project_name>",

"project_source": "<project_url>",

"project_source_type": "vcs",

"publish_type": "SNAPSHOT",

"vcs_type": "git"

"server_source": "<server_url>"

}

]

}

Детальное описание полей конфигурации:

� sbt_home: Путь к установленному SBT (Scala Build Tool). если не задан sbt ищется из переменной
окружения path

� concurrent_module_updates: Количество модулей, которые можно скачивать одновременно. По
умолчанию - 20. Поставьте 1 для перевода в более надежный, но и более медленный однопоточный
режим.

� svn_path: Путь к SVN (если используется) если не задан svn ищется из переменной окружения
path

� projects: Список проектов, где каждый проект:

– project_branch: Название ветки для git (опционально, по умолчанию main).

– jdk_home: Путь к JDK (опционально).

– name: Имя проекта (обязательное поле).

36

– project_source: Источник проекта, например.

* Если начинается с lxc://, выбрасывается исключение («Not implemented»).

* Иначе считается vcs, и если это git, может указываться ветка.

– project_source_type: Тип источника проекта.

– publish_type: Тип публикации (опционально, строка).

– vcs_type: Указывает, какая система управления версиями используется для проекта

– server_source: Источник сервера приложения, игнорируется если сборка проекта идет от
комплекта сборки

37

	Обзор
	Назначение
	Требования
	Необходимые библиотеки:
	Доп пакет:

	Установка
	Добавление проекта в рабочее пространство
	Источник проекта

	Работа с активным проектом
	Обновление активного проекта
	Конфигурирование сервера приложения
	Изменения настроек проекта
	Изменения глобальных настроек
	Хранения паролей
	Горячие клавиши

	Настройки
	Настройки окружения
	Путь к мастер ключу
	Путь к IntelliJ IDEA
	Путь к svn
	Путь к sbt
	Начало диапазона динамических портов

	Настройки проекта
	Jdk
	Url к проекту
	Url к серверу приложения
	Использовать стандартные порты
	Флаг сборки релиза

	Ярлыки
	activate_project.cmd
	active_project_configure_idea.cmd
	active_project_refresh.cmd
	active_project_sbt.cmd
	active_project_start_idea.cmd
	start_sep_idea.cmd
	add_project.cmd
	delete_project.cmd

	Настройка GitLab CI для сборки проектов gsf-cli
	1. Настройка gitlab-runner
	1.1 Настройка раннера в GitLab проекте
	1.2. Установка GitLab Runner
	1.3. Регистрация раннера
	1.4. Проверка
	Возможные проблемы

	2. Установка и настройка GSF-CLI на хосте сборки
	Программное обеспечение, которое потребуется для сборки
	2.1. Установка требуемых пакетов
	2.2. Подготовка директорий
	2.3. Загрузка необходимых компонентов
	2.4. Установка и распаковка компонентов
	2.5. Установка GSF CLI
	2.6. Настройка сборочного проекта
	Конфигурационный файл
	Регистрация приватного ключа
	Установка необходимых учётных данных

	2.7. Активация headless-режима
	2.8. Загрузка конфигурации
	2.9. Смена владельца директории

	3. Конфигурация пайплайна

	Настройка Jenkins агента
	1. Создание рабочей директории
	2. Установка Java 17
	3. Настройка узла Jenkins
	4. Расширенные настройки
	5. Запуск агента

	Среда сборки проекта
	1. Сборка с использованием публичных репозиториев
	2. Сборка с использованием внутреннего прокси-репозитория
	3. Сборка в закрытой среде (изолированной)
	Настройка сборки в закрытой среде.
	Шаг 1. Создать файл с конфигурацией репозитория

	Шаг 2. Добавить файл с учётными данными (если нужен доступ по логину/паролю)
	Шаг 3. Добавление сертификатов. В большинстве случаев в закрытой среде потребуется настроить Java-сертификаты

	Конфигуратор проектов
	Commands:
	Full_help
	Configure
	Register_private_key
	Load_config
	Add_project
	Delete_project
	Activate_project
	Enable_headless
	Disable_headless

	Менеджер проектов
	Commands:
	Full_help
	Prepare_project
	Refresh_server
	Refresh_source
	Refresh
	Init_project
	Configure_idea
	Set_is_publish_release
	Publish_build_kit
	Create_build_kit_release
	Git_branch_build_kit
	Refresh_links
	Publish
	Publish_sbt_plugin
	Build
	Test
	Clean
	Update_module_dependency
	Save_external_dependencies
	Diff_external_dependencies

	Менеджер учетных данных
	Commands:
	Full_help
	Get
	Show
	Git
	Set

	Утилита для git
	Commands:
	Full_help
	Refresh
	Create_generation
	Create_major
	Create_minor
	Create_build
	Create_patch_branch
	Create_patch
	Switch
	Update_to_last_tag
	Switch_to_last_tag
	Status
	Version_info

	Реестр используемых библиотек
	Сохранение набора используемых библиотек
	Сравнение набора внешних зависимостей

	Логирование в проекте
	Общий обзор
	Структура логирования
	Пример структуры каталога логов

	Конфигурационные файлы проекта
	Пример содержимого config.json
	Детальное описание полей конфигурации:

